Skip to main content

Introduction to the Microdialysis Technology

  • Chapter
  • First Online:
Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

Abstract

Microdialysis (μD) has been established as a reliable in vivo tool to measure interstitial drug concentrations quasi online in virtually every given tissue and organ in animals and humans. Following its first description in the 1970s μD has been further developed and employed as a research and drug development tool in >14,000 PubMed publications. The rationale for the application of μD in Pharma R&D is based on the presence of blood to tissue barriers which hamper drug penetration to target sites. A clear understanding of target site pharmacokinetics (PK), as provided by μD and complementary techniques is a prerequisite for understanding drug action in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson C, Andersson T, Molander M (1991) Ethanol absorption across human skin measured by in vivo microdialysis technique. Acta Derm Venereol 71:389–393

    PubMed  CAS  Google Scholar 

  • Anderson C, Andersson T, Wårdell K (1994) Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 102:807–811

    Article  PubMed  CAS  Google Scholar 

  • Ao X, Stenken JA (2006) Microdialysis sampling of cytokines. Methods 38:331–341

    Article  PubMed  CAS  Google Scholar 

  • Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordström CH, Robertson C, Sahuquillo J, Smith M, Stocchetti N, Ungerstedt U, Unterberg A, Olsen NV (2004) Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 30:2166–2169

    Article  PubMed  Google Scholar 

  • Benfeldt E, Groth L (1998) Feasibility of measuring lipophilic or protein-bound drugs in the dermis by in vivo microdialysis after topical or systemic drug administration. Acta Derm Venereol 78:274–278

    Article  PubMed  CAS  Google Scholar 

  • Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14:750–756

    Article  PubMed  CAS  Google Scholar 

  • Bolinder J, Ungerstedt U, Arner P (1993) Long term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet 342:1080–1085

    Article  PubMed  CAS  Google Scholar 

  • Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, Zipfel GJ, Holtzman DM (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Langer O, Dobrozemsky G, Müller U, Zeitlinger M, Mitterhauser M, Wadsak W, Dudczak R, Kletter K, Müller M (2004) [18F]Ciprofloxacin, a new PET tracer for non-invasive assessment of ciprofloxacin tissue pharmacokinetics in humans. Antimicrobial Agents Chemother 48:3850–3857

    Article  CAS  Google Scholar 

  • Brunner M, Müller M (2007) Microdialysis in clinical drug delivery studies. In: Westerink BH, Cremers TI (eds) Handbook of microdialysis. Elsevier, pp 625–644

    Google Scholar 

  • Carneheim C, Ståhle L (1991) Microdialysis of lipophilic compounds: a methodological study. Pharmacol Toxicol 69:378–380

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia CS (1999) In vivo microdialysis sampling: theory and applications. Biomed Chromatogr 13:317–332

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia CS, Müller M, Benfeldt E, Sawchuk RJ, Cheung WY, Elmquist WF, Bungay PM, Derendorf H, DeLange ECM, Lunte CE, Hammarlund-Udenaes M, Bolinder J, Bullock R, Kellogg DL, Joukhadar C, Henrik Nordstrom C, Rollema H, Welty DF, Yeo H, Stahle L, Bashaw ED, Shah VP, Ungerstedt U (2007) AAPS-FDA Workshop white paper: microdialysis principles, application and regulatory perspectives. J Clin Pharmacol 47:589–603

    Google Scholar 

  • Clinckers R, Smolders I, Vermoesen K, Michotte Y, Danhof M, Voskuyl R, Della Pasqua O (2009) Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opin Drug Metab Toxicol 5:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246

    Article  PubMed  CAS  Google Scholar 

  • Clough GF (2005) Microdialysis of large molecules. AAPS J 7:E686–E692

    Article  PubMed  CAS  Google Scholar 

  • Cross SE, Anderson C, Thompson MJ, Roberts MS (1997) Is there tissue penetration after application of topical salicylate formulations? Lancet 350:636

    Article  PubMed  CAS  Google Scholar 

  • Davies MI, Cooper JD, Desmond SS, Lunte CE, Lunte SM (2000) Analytical considerations for microdialysis sampling. Adv Drug Deliv Rev 45:169–188

    Article  PubMed  CAS  Google Scholar 

  • Delacher S, Derendorf H, Hollenstein U, Brunner M, Joukhadar C, Hofmann S, Georgopoulos A, Eichler HG, Müller M (2000) An in vivo PK—in vitro PD model to simulate antibiotic activity at the target site. J Antimicrob Agents Chemother 46:733–739

    Article  CAS  Google Scholar 

  • de Lange EC, de Boer AG, Breimer DD (2000) Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Deliv Rev 45:125–148

    Article  PubMed  Google Scholar 

  • Duo J, Fletcher H, Stenken JA (2006) Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: current progress and future perspectives. Biosens Bioelectron 22:449–457

    Article  PubMed  CAS  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  PubMed  CAS  Google Scholar 

  • Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Långström B, Hillered L, Persson L (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644

    Article  PubMed  CAS  Google Scholar 

  • Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK (2011) The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol 8:344–356

    PubMed  CAS  Google Scholar 

  • Eichler HG, Müller M (1998) Drug distribution—the forgotten relative of clinical pharmacokinetics. Clin Pharmacokinet 34:95–99

    Article  PubMed  CAS  Google Scholar 

  • Elmquist WF, Sawchuk RJ (1997) Application of microdialysis in pharmacokinetic studies. Pharm Res 14:267–288

    Article  PubMed  CAS  Google Scholar 

  • Fettweis G, Borlak J (1996) Topics in xenobiochemistry—application of microdialysis techniques in pharmacokinetic studies. Xenobiotica 26:473–485

    Article  PubMed  CAS  Google Scholar 

  • Fischman AJ, Alpert NM, Rubin RH (2002) Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet 41:581–602

    Article  PubMed  CAS  Google Scholar 

  • Fried I, Wilson CL, Morrow JW, Cameron KA, Behnke ED, Ackerson LC, Maidment NT (2001) Increased dopamine release in the human amygdala during performance of cognitive tasks. Nat Neurosci 4:201–206

    Article  PubMed  CAS  Google Scholar 

  • Hansen DK, Davies MI, Lunte SM, Lunte CE (1999) Pharmacokinetic and metabolism studies using microdialysis sampling. J Pharm Sci 88:14–27

    Article  PubMed  CAS  Google Scholar 

  • Herbaugh AW, Stenken JA (2011) Antibody-enhanced microdialysis collection of CCL2 from rat brain. J Neurosci Methods 202:124–127

    Article  PubMed  CAS  Google Scholar 

  • Herkner H, Müller MR, Kreischitz N, Mayer BX, Frossard M, Joukhadar C, Klein N, Lackner E, Müller M (2002) Closed chest microdialysis to measure antibiotic penetration into human lung tissue. Am J Resp Crit Care Med 165:273–276

    PubMed  Google Scholar 

  • Hillered L, Persson L (1999) Neurochemical monitoring of the acutely injured human brain. Scand J Clin Lab Invest Suppl 229:9–18

    Article  PubMed  CAS  Google Scholar 

  • Hillman J, Aneman O, Anderson C, Sjögren F, Säberg C, Mellergård P (2005) A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56:1264–1268

    Article  PubMed  Google Scholar 

  • Höcht C, Opezzo JA, Bramuglia GF, Taira CA (2006) Application of microdialysis in clinical pharmacology. Curr Clin Pharmacol 1:163–183

    Article  PubMed  Google Scholar 

  • Holmgaard R, Nielsen JB, Benfeldt E (2010) Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: current state and future perspectives. Skin Pharmacol Physiol 23:225–243

    Article  PubMed  CAS  Google Scholar 

  • Holmgaard R, Benfeldt E, Nielsen JB, Gatschelhofer C, Sorensen JA, Höfferer C, Bodenlenz M, Pieber TR, Sinner F (2012) Comparison of open-flow microperfusion and microdialysis methodologies when sampling topically applied fentanyl and benzoic acid in human dermis ex vivo. Pharm Res 29:1808–1820

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65

    Article  PubMed  CAS  Google Scholar 

  • Jansson PA, Fowelin JP, von Schenck HP, Smith UP, Lönnroth PN (1993) Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin. Diabetes 42:1469–1473

    Article  PubMed  CAS  Google Scholar 

  • Kendrick KM, Guevara-Guzman R, Zorrilla J, Hinton MR, Broad KD, Mimmack M, Ohkura S (1997) Formation of olfactory memories mediated by nitric oxide. Nature 388:670–674

    Article  PubMed  CAS  Google Scholar 

  • Kennergren C, Mantovani V, Lönnroth P, Nystrom B, Berglin E, Hamberger A (1999) Monitoring of extracellular aspartate aminotransferase and troponin T by microdialysis during and after cardioplegic heart arrest. Cardiology 92:162–170

    Article  PubMed  CAS  Google Scholar 

  • Kreilgaard M (2002) Assessment of cutaneous drug delivery using microdialysis. Adv Drug Deliv Rev 54(Suppl 1):S99–S121

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki Y, Nakamura S, Shiojiri Y, Kawasaki H (1998) Lipo-microdialysis: a new microdialysis method for studying the pharmacokinetics of lipophilic substances. Biol Pharm Bull 21:194–196

    Article  PubMed  CAS  Google Scholar 

  • Langer O, Brunner M, Karch R, Müller U, Dobrozemsky G, Abrahim A, Paul M, Zeitlinger M, Joukhadar C, Dudczak R, Kletter K, Müller M (2005) Combined positron emission tomography and microdialysis for in vivo assessment of intracellular drug pharmacokinetics in humans. J Nucl Med 46:1835–1841

    PubMed  CAS  Google Scholar 

  • Li Y, Peris J, Zhong L, Derendorf H (2006) Microdialysis as a tool in local pharmacodynamics. AAPS J 8:E222–E235

    PubMed  CAS  Google Scholar 

  • Lönnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253:E228–E231

    PubMed  Google Scholar 

  • Lunte SM, Lunte CE (1996) Microdialysis sampling for pharmacological studies: HPLC and CE analysis. Adv Chromatogr 36:383–432

    PubMed  CAS  Google Scholar 

  • Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73:175–186

    Article  PubMed  CAS  Google Scholar 

  • Maurer MH, Haux D, Unterberg AW, Sakowitz OW (2008) Proteomics of human cerebral microdialysate: from detection of biomarkers to clinical application. Proteomics Clin Appl 2:437–443

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Schmid R, Wagner O, Osten BV, Shayganfar H, Eichler HG (1995) In vivo characterization of transdermal drug transport by microdialysis. J Controlled Release 37:49–57

    Article  Google Scholar 

  • Müller M, Haag O, Burgdorff T, Georgopoulos A, Weninger W, Jansen B, Stanek G, Pehamberger H, Agneter E, Eichler HG (1996a) Characterization of peripheral compartment kinetics of antibiotics by in vivo microdialysis in humans. Antimicrob Agents Chemother 40:2703–2709

    PubMed  Google Scholar 

  • Müller M, Holmäng A, Anderson OK, Eichler HG, Lönnroth P (1996b) Measurement of interstitial muscle glucose and lactate concentrations during an oral glucose tolerance test. Am J Physiol 271:E1003–E1007

    PubMed  Google Scholar 

  • Müller M, Mader RM, Steiner B, Steger GG, Jansen B, Gnant M, Helbich T, Jakesz R, Eichler HG, Blöchl-Daum B (1997a) 5-Fluorouracil kinetics in the interstitial tumor space and clinical response in breast cancer patients. Cancer Res 57:2598–2601

    PubMed  Google Scholar 

  • Müller M, Burgdorff T, Jansen B, Singer EA, Agneter E, Dorner G, Brunner M, Eichler HG (1997b) In vivo drug-response measurements in target tissues by microdialysis. Clin Pharmacol Ther 62:165–170

    Article  PubMed  Google Scholar 

  • Müller M (2000) Microdialysis in clinical drug delivery studies. Adv Drug Deliv Rev 45:255–269

    Article  PubMed  Google Scholar 

  • Müller M (2002) Science, medicine and the future: microdialysis. BMJ 324:588–591

    Article  PubMed  Google Scholar 

  • Müller M, delaPena A, Derendorf H (2004) Issues in PK-PD of antibiotics: tissue penetration. Antimicrobial Agents Chemother 48:1441–1453

    Article  Google Scholar 

  • Müller M (2009) Monitoring tissue drug levels by microdialysis. Altern Lab Anim 37:57–59

    PubMed  Google Scholar 

  • Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651:1–14

    Article  PubMed  CAS  Google Scholar 

  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Banks R, Kumar V, Rand KH, Derendorf H (2008) Clinical microdialysis in skin and soft tissues: an update. J Clin Pharmacol 48:351–364

    Google Scholar 

  • Shingaki T, Takashima T, Wada Y, Tanaka M, Kataoka M, Ishii A, Shigihara Y, Sugiyama Y, Yamashita S, Watanabe Y (2012) Imaging of gastrointestinal absorption and biodistribution of an orally administered probe using positron emission tomography in humans. Clin Pharmacol Ther 91:653–659

    Article  PubMed  CAS  Google Scholar 

  • Shah VP (2004) Topical drug products—microdialysis: regulatory perspectives. Int J Clin Pharmacol Ther 42:379–381

    Google Scholar 

  • Stahl M, Bouw R, Jackson A, Pay V (2002) Human microdialysis. Curr Pharm Biotechnol 3:165–178

    Article  PubMed  CAS  Google Scholar 

  • Ståhle L, Arner P, Ungerstedt U (1991) Drug distribution studies with microdialysis. III: Extracellular concentration of caffeine in adipose tissue in man. Life Sci 49:1853–1858

    Article  PubMed  Google Scholar 

  • Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1991) Microdialysis—principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  • Van Eeckhaut A, Maes K, Aourz N, Smolders I, Michotte Y (2011) The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC-MS/MS. Bioanalysis 3:1271–1285

    Article  PubMed  Google Scholar 

  • Whitaker G, Lunte CE (2010) Investigation of microdialysis sampling calibration approaches for lipophilic analytes: doxorubicin. J Pharm Biomed Anal 53:490–496

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Brundage RC, Barbhaiya RH, Sawchuk RJ (1997) Microdialysis studies of the distribution of stavudine into the central nervous system in the freely-moving rat. Pharm Res 14:865–872

    Article  PubMed  Google Scholar 

  • Zeitlinger MA, Derendorf H, Mouton JW, Cars O, Craig WA, Andes D, Theuretzbacher U (2011) Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–3074

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Gallo JM (2005) In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J 7:E659–E667

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Müller, M. (2013). Introduction to the Microdialysis Technology. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_1

Download citation

Publish with us

Policies and ethics