Skip to main content

Part of the book series: Nebraska Symposium on Motivation ((NSM))

Abstract

Statistical learning refers to an unconscious cognitive process in which repeated patterns, or regularities, are extracted from the sensory environment. In this chapter, I describe what is currently known about statistical learning. First, I classify types of regularities that exist in the visual environment. Second, I introduce a family of experimental paradigms that have been used to study statistical learning in the laboratory. Third, I review a series of behavioral and functional neuroimaging studies that seek to uncover the underlying nature of statistical learning. Finally, I consider ways in which statistical learning may be important for perception, attention, and visual search. The goals of this chapter are thus to highlight the prevalence of regularities, to explain how they are extracted by the mind and brain, and to suggest that the resulting knowledge has widespread consequences for other aspects of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron, 21, 373–383.

    Article  PubMed  Google Scholar 

  • Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19, 392–398.

    Article  PubMed  Google Scholar 

  • Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162.

    Article  PubMed  Google Scholar 

  • Avrahami, J., & Kareev, Y. (1994). The emergence of events. Cognition, 53, 239–261.

    Article  PubMed  Google Scholar 

  • Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23, 655–664.

    Article  Google Scholar 

  • Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science, 3, 2–13.

    Article  PubMed  Google Scholar 

  • Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106, 1382–1407.

    Article  PubMed  Google Scholar 

  • Beck, M. R., Angelone, B. L., & Levin, D.T. (2004). Knowledge about the probability of change affects change detection performance. Journal of Experimental Psychology: Human Perception and Performance, 30, 778–791.

    Article  PubMed  Google Scholar 

  • Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143–177.

    Article  PubMed  Google Scholar 

  • Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393–404.

    Article  PubMed  Google Scholar 

  • Chong, S. C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 67, 1–13.

    Article  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360–365.

    Article  Google Scholar 

  • Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2, 844–847.

    Article  PubMed  Google Scholar 

  • Cohen, N. J., & Eichenbaum, H. (1993). Memory, Amnesia, and the Hippocampal System. Cambridge: MIT Press.

    Google Scholar 

  • Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition B31, 24–39.

    Google Scholar 

  • Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15, 559–564.

    Article  PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  PubMed  Google Scholar 

  • Endo, N., & Takeda, Y. (2004). Selective learning of spatial configuration and object identity in visual search. Perception & Psychophysics, 66, 293–302.

    Article  Google Scholar 

  • Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601.

    Article  PubMed  Google Scholar 

  • Graf Estes, K. M., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Psychological Science, 18, 254–260.

    Article  Google Scholar 

  • Fahle, M., & Poggio, T. (2002). Perceptual Learning. Cambridge: MIT Press.

    Google Scholar 

  • Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12, 499–504.

    Article  PubMed  Google Scholar 

  • Fiser, J., & Aslin, R. N. (2002). Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences USA, 99, 15822–15826.

    Google Scholar 

  • Flowers, J. H., & Lohr, D. J. (1985). How does familiarity affect visual search for letter strings? Perception & Psychophysics, 37, 557–567.

    Article  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R. (2009). The importance of proving the null. Psychological Review, 116, 439–453.

    Article  PubMed  Google Scholar 

  • Gebhart, A. L., Aslin, R. N., & Newport, E. L. (2009). Changing structures in midstream: Learning along the statistical garden path. Cognitive Science, 33, 1087–1116.

    Article  PubMed  Google Scholar 

  • Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67, 1252–1268.

    Article  Google Scholar 

  • Giroux, I., & Rey, A. (2009). Lexical and sub-lexical units in speech perception. Cognitive Science, 33, 260–272.

    Article  PubMed  Google Scholar 

  • Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585–612.

    Article  PubMed  Google Scholar 

  • Henderson, J. M., & Hollingworth, A. (2003). Global transsaccadic change blindness during scene perception. Psychological Science, 14, 493–497.

    Article  PubMed  Google Scholar 

  • Henderson, J. M., Weeks, P. A., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25, 210–228.

    Article  Google Scholar 

  • Hollingworth, A. (2009). Two forms of scene memory guide visual search: Memory for scene context and memory for the binding of target object to scene location. Visual Cognition, 17, 273–291.

    Article  Google Scholar 

  • Hollingworth, A., & Henderson, J. M. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, 127, 398–415.

    Article  Google Scholar 

  • Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to separable statistical cues by individual learners. Journal of Experimental Psychology: General, 130, 658–680.

    Article  Google Scholar 

  • Jiang, Y., & Song, J. -H. (2005). Hyperspecificity in visual implicit learning: Learning of spatial layout is contingent on item identity. Journal of Experimental Psychology: Human Perception and Performance, 31, 1439–1448.

    Article  PubMed  Google Scholar 

  • Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35–B42.

    Article  PubMed  Google Scholar 

  • Kubovy, M. (1988). Should we resist the seductiveness of the space:time::vision:audition analogy. Journal of Experimental Psychology: Human Perception and Performance, 14, 318–320.

    Article  Google Scholar 

  • Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33, 816–828.

    Article  PubMed  Google Scholar 

  • Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16, 427–438.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–280.

    Article  PubMed  Google Scholar 

  • Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 350–364.

    Article  PubMed  Google Scholar 

  • Miyashita, Y. (1993). Inferior temporal cortex: Where visual perception meets memory. Annual Review of Neuroscience, 16, 245–263.

    Article  PubMed  Google Scholar 

  • Neider, M. B., & Zelinsky, G. J. (2006). Scene context guides eye movements during visual search. Vision Research, 46, 614–621.

    Article  PubMed  Google Scholar 

  • Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.

    Article  PubMed  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  PubMed  Google Scholar 

  • Olson, I.R., & Chun, M.M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1299–1313.

    Article  PubMed  Google Scholar 

  • Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences USA, 105, 2745–2750.

    Google Scholar 

  • Palmer, S. E. (1975). The effects of contextual scenes on the identification of objects. Memory & Cognition, 3, 519–526.

    Article  Google Scholar 

  • Reber, A. S. (1976). Implicit learning of synthetic languages: The role of instructional set. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2, 88–94.

    Google Scholar 

  • Ryan, J. D., Althoff, R. R., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological Science, 11, 454–461.

    Article  PubMed  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996a). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.

    Article  Google Scholar 

  • Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996b). Word segmentation: The role of distributional cues. Journal of Memory & Language, 35, 606–621.

    Article  Google Scholar 

  • Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52.

    Article  PubMed  Google Scholar 

  • Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.

    Article  PubMed  Google Scholar 

  • Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.

    Article  PubMed  Google Scholar 

  • Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80, 1–46.

    Article  PubMed  Google Scholar 

  • Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 2941–2951.

    Article  PubMed  Google Scholar 

  • Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.

    Article  PubMed  Google Scholar 

  • Stevens, W. D., Buckner, R. L., & Schacter, D. L. (2010). Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex, 20, 1997–2006.

    Article  PubMed  Google Scholar 

  • Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7-to 9-month-old infants. Developmental Psychology, 39, 706–716.

    Article  PubMed  Google Scholar 

  • Toni, I., Krams, M., Turner, R., & Passingham, R. E. (1998). The time course of changes during motor sequence learning: A whole-brain fMRI study. NeuroImage, 8, 50–61.

    Article  PubMed  Google Scholar 

  • Toro, J. M., & Trobalón, J. B. (2005). Statistical computations over a speech stream in a rodent. Perception & Psychophysics, 67, 867–875.

    Article  Google Scholar 

  • Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113, 766–786.

    Article  PubMed  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: General, 114, 285–310.

    Article  Google Scholar 

  • Turk-Browne, N. B., & Scholl, B. J. (2009). Flexible visual statistical learning: Transfer across space and time. Journal of Experimental Psychology: Human Perception and Performance, 35, 195–202.

    Article  PubMed  Google Scholar 

  • Turk-Browne, N. B., Jungé, J., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134, 552–564.

    Article  Google Scholar 

  • Turk-Browne, N. B., Isola, P. J., Scholl, B. J., & Treat, T. A. (2008). Multidimensional visual statistical learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 399–407.

    Article  PubMed  Google Scholar 

  • Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934–1945.

    Article  PubMed  Google Scholar 

  • Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30, 11177–11187.

    Article  PubMed  Google Scholar 

  • Umemoto, A., Scolari, M., Vogel, E. K. & Awh, E. (2010). Statistical learning induces discrete shifts in the allocation of working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 36, 1419–1429.

    Article  PubMed  Google Scholar 

  • Watanabe, T., Náñez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413, 844–848.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (2001). Asymmetries in visual search: An introduction. Perception & Psychophysics, 63, 381–389.

    Article  Google Scholar 

  • Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 127, 3–21.

    Article  PubMed  Google Scholar 

  • Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428.

    Article  PubMed  Google Scholar 

  • Zhao, J., Ngo, N., McKendrick, R., & Turk-Browne, N. B. (2011). Mutual interference between statistical summary perception and statistical learning. Psychological Science, 22, 1212–1219.

    Article  PubMed  Google Scholar 

  • Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (in press). Attention is spontaneously biased towards regularities. Psychological Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. Turk-Browne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turk-Browne, N. (2012). Statistical Learning and Its Consequences. In: Dodd, M., Flowers, J. (eds) The Influence of Attention, Learning, and Motivation on Visual Search. Nebraska Symposium on Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4794-8_6

Download citation

Publish with us

Policies and ethics