Skip to main content

Calcium Influx Through Reversed NCX Controls Migration of Microglia

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Microglia, the immune cells of the central nervous system (CNS), are busy and vigilant guards of the adult brain, which scan brain parenchyma for damage and activate in response to lesions. Release of danger signals/chemoattractants at the site of damage initiates microglial activation and stimulates migration. The main candidate for a chemoattractant sensed by microglia is adenosine triphosphate (ATP); however, many other substances can have similar effects. Some neuropeptides such as angiotensin II, bradykinin, endothelin, galanin and neurotensin are also chemoattractants for microglia. Among them, bradykinin increases microglial migration using mechanism distinct from that of ATP. Bradykinin-induced migration is controlled by a Gi/o-protein-independent pathway, while ATP-induced migration involves Gi/o proteins as well as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-dependent pathway. Galanin was reported to share certain signalling cascades with bradykinin; however, this overlap is only partial. Bradykinin, for example, stimulates Ca2+ influx through the reversed Na+/Ca2+ exchange (NCX), whereas galanin induces intracellular Ca2+ mobilization by inositol-3,4,5-trisphosphate (InsP3)-dependent Ca2+ release from the intracellular store. These differences in signal cascades indicate that different chemoattractants such as ATP, bradykinin and galanin control distinct microglial functions in pathological conditions such as lesion and inflammation and NCX contributes to a special case of microglial migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • F. Boscia, R. Gala, A. Pannaccione, A. Secondo, A. Scorziello, G. Di Renzo, L. Annunziato, NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40, 3608–3617 (2009)

    Article  PubMed  CAS  Google Scholar 

  • C. Boucsein, H. Kettenmann, C. Nolte, Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur. J. Neurosci. 12, 2049–2058 (2000)

    Article  PubMed  CAS  Google Scholar 

  • L. Cartier, O. Hartley, M. Dubois-Dauphin, K.H. Krause, Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Rev. 48, 16–42 (2005)

    Article  PubMed  CAS  Google Scholar 

  • D. Davalos, J. Grutzendler, G. Yang, J.V. Kim, Y. Zuo, S. Jung, D.R. Littman, M.L. Dustin, W.B. Gan, ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005)

    Article  PubMed  CAS  Google Scholar 

  • K. Farber, U. Pannasch, H. Kettenmann, Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci. 29, 128–138 (2005)

    Article  PubMed  Google Scholar 

  • R. Ferreira, T. Santos, L. Cortes, S. Cochaud, F. Agasse, A.P. Silva, S. Xapelli, J.O. Malva, Neuropeptide Y inhibits interleukin-1 beta (IL-1beta)-induced microglia motility. J. Neurochem. 120, 93–105 (2011)

    Article  PubMed  Google Scholar 

  • S. Honda, Y. Sasaki, K. Ohsawa, Imai, Y. Nakamura, K. Inoue, S. Kohsaka, Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 21, 1975–1982 (2001)

    PubMed  CAS  Google Scholar 

  • M. Ifuku, K. Farber, Y. Okuno, Y. Yamakawa, T. Miyamoto, C. Nolte, V.F. Merrino, S. Kita, T. Iwamoto, I. Komuro, B. Wang, G. Cheung, E. Ishikawa, H. Ooboshi, M. Bader, K. Wada, H. Kettenmann, M. Noda, Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J. Neurosci. 27, 13065–13073 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M. Ifuku, Y. Okuno, Y. Yamakawa, K. Izumi, H.S. Seifert, Kettenmann, M. Noda, Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca2+ mobilization in galanin-induced microglial migration. J. Neurochem. 117, 61–70 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Y. Irino, Y. Nakamura, K. Inoue, S. Kohsaka, K. Ohsawa, Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J. Neurosci. Res. 86, 1511–1519 (2008)

    Article  PubMed  CAS  Google Scholar 

  • H. Kettenmann, U.K. Hanisch, M. Noda, A. Verkhratsky, Physiology of microglia. Physiol. Rev. 91, 461–553 (2011)

    Article  PubMed  CAS  Google Scholar 

  • S.U. Kim, J. de Vellis, Microglia in health and disease. J. Neurosci. Res. 81, 302–313 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J. Kimura, A. Noma, H. Irisawa, Na-Ca exchange current in mammalian heart cells. Nature 319, 596–597 (1986)

    Article  PubMed  CAS  Google Scholar 

  • G.W. Kreutzberg, Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996)

    Article  PubMed  CAS  Google Scholar 

  • A.R. Light, Y. Wu, R.W. Hughen, P.B. Guthrie, Purinergic receptors activating rapid intracellular Ca increases in microglia. Neuron Glia Biol. 2, 125–138 (2006)

    Article  PubMed  Google Scholar 

  • G.J. Liu, R. Nagarajah, R.B. Banati, M.R. Bennett, Glutamate induces directed chemotaxis of microglia. Eur. J. Neurosci. 29, 1108–1118 (2009)

    Article  PubMed  Google Scholar 

  • S. Martin, E. Dicou, J.P. Vincent, J. Mazella, Neurotensin and the neurotensin receptor-3 in microglial cells. J. Neurosci. Res. 81, 322–326 (2005)

    Article  PubMed  CAS  Google Scholar 

  • T. Matsuda, N. Arakawa, K. Takuma, Y. Kishida, Y. Kawasaki, M. Sakaue, K. Takahashi, T. Takahashi, T. Suzuki, T. Ota, A. Hamano-Takahashi, M. Onishi, Y. Tanaka, K. Kameo, A. Baba, SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 298, 249–256 (2001)

    PubMed  CAS  Google Scholar 

  • T. Matsuda, T. Nagano, M. Takemura, A. Baba, Topics on the Na+/Ca2+ exchanger: responses of Na+/Ca2+ exchanger to interferon-gamma and nitric oxide in cultured microglia. J. Pharm. Sci. 102, 22–26 (2006)

    Article  CAS  Google Scholar 

  • S. Mechmann, L. Pott, Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319, 597–599 (1986)

    Article  PubMed  CAS  Google Scholar 

  • T. Moller, O. Kann, A. Verkhratsky, H. Kettenmann, Activation of mouse microglial cells affects P2 receptor signaling. Brain Res. 853, 49–59 (2000)

    Article  PubMed  CAS  Google Scholar 

  • T. Nagano, Y. Kawasaki, A. Baba, M. Takemura, T. Matsuda, Up-regulation of Na+-Ca2+ exchange activity by interferon-gamma in cultured rat microglia. J. Neurochem. 90, 784–791 (2004)

    Article  PubMed  CAS  Google Scholar 

  • T. Nagano, M. Osakada, Y. Ago, Y. Koyama, A. Baba, S. Maeda, M. Takemura, T. Matsuda, SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger, attenuates sodium nitroprusside-induced apoptosis in cultured rat microglia. Br. J. Pharmacol. 144, 669–679 (2005)

    Article  PubMed  CAS  Google Scholar 

  • M. Noda, Y. Kariura, T. Amano, Y. Manago, K. Nishikawa, S. Aoki, K. Wada, Expression and function of bradykinin receptors in microglia. Life Sci. 72, 1573–1581 (2003)

    Article  PubMed  CAS  Google Scholar 

  • M. Noda, K. Sasaki, M. Ifuku, K. Wada, Multifunctional effects of bradykinin on glial cells in relation to potential anti-inflammatory effects. Neurochem. Int. 51, 185–191 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M. Noda, M. Ifuku, Y. Okuno, K. Beppu, Y. Mori, S. Naoe. Neuropeptides as attractants of immune cells in the brain and their distinct signaling. Adv. Neuron. Biol. 1, 53–62 (2011)

    Article  PubMed  Google Scholar 

  • K. Ohsawa, S. Kohsaka, Dynamic motility of microglia: Purinergic modulation of microglial movement in the normal and pathological brain. Glia 59, 1793–1799 (2011)

    Article  PubMed  Google Scholar 

  • K. Ohsawa, Y. Irino, Y. Nakamura, C. Akazawa, K. Inoue, S. Kohsaka, Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55, 604–616 (2007)

    Article  PubMed  Google Scholar 

  • K. Ohsawa, Y. Irino, T. Sanagi, Y. Nakamura, E. Suzuki, K. Inoue, S. Kohsaka, P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58, 790–801 (2010)

    PubMed  Google Scholar 

  • V.H. Perry, P.B. Andersson, S. Gordon, Macrophages and inflammation in the central nervous system. Trends Neurosci. 16, 268–273 (1993)

    Article  PubMed  CAS  Google Scholar 

  • A. Rappert, K. Biber, C. Nolte, M. Lipp, A. Schubel, B. Lu, N.P. Gerard, C. Gerard, H.W. Boddeke, H. Kettenmann, Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J. Immunol. 168, 3221–3226 (2002)

    PubMed  CAS  Google Scholar 

  • T. Schilling, C. Stock, A. Schwab, C. Eder, Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur. J. Neurosci. 19, 1469–1474 (2004)

    Article  PubMed  Google Scholar 

  • A. Schwab, Function and spatial distribution of ion channels and transporters in cell migration. Am. J. Physiol. Renal Physiol. 280, F739–F747 (2001a)

    PubMed  CAS  Google Scholar 

  • A. Schwab, Ion channels and transporters on the move. News Physiol. Sci. 16, 29–33 (2001b)

    PubMed  CAS  Google Scholar 

  • N. Takayama, H. Ueda, Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J. Neurosci. 25, 430–435 (2005)

    Article  PubMed  CAS  Google Scholar 

  • L. Walter, A. Franklin, A. Witting, C. Wade, Y. Xie, G. Kunos, K. Mackie, N. Stella, Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1398–1405 (2003)

    PubMed  CAS  Google Scholar 

  • W. Walz, S. Ilschner, C. Ohlemeyer, R. Banati, H. Kettenmann, Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J. Neurosci. 13, 4403–4411 (1993)

    PubMed  CAS  Google Scholar 

  • Y. Watanabe, Y. Koide, J. Kimura, Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors. J. Pharm. Sci. 102, 7–16 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mami Noda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noda, M., Ifuku, M., Mori, Y., Verkhratsky, A. (2013). Calcium Influx Through Reversed NCX Controls Migration of Microglia. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_24

Download citation

Publish with us

Policies and ethics