Skip to main content

Higher Order Structures of the Caseins: A Paradox?

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Historically caseins were classified as random coils. Recent advances in the field of protein chemistry have produced a “New View” of protein structure. Casein structures are interpreted with regard to the latter theory and are now considered to be members of the class of proteins referred to as natively unfolded or molten globule. The caseins display the characteristics of this class of proteins as they react with each other using defined structural elements to form large, open, hydrated, flexible structures. These casein–casein interactions give the product, sodium caseinate, its reliable properties as a food ingredient. Overall, the concept that the caseins are both structured and flexible is explained using the architectural concepts of tensegrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaimo, M.H., Wickham, E.D. and Farrell, H.M., Jr. (1999a). Effect of self-association of αS1-casein and its cleavage fragments on aromatic circular dichroic spectra: comparison with predicted models. Biochim. Biophys. Acta. 1431, 395–409.

    Google Scholar 

  • Alaimo, M.H., Farrell, H.M., Jr. and Germann, M.W. (1999b). Conformational analysis of the hydrophobic peptide αS1-casein (f 136–196). Biochim. Biophys. Acta. 1431, 410–420.

    Google Scholar 

  • Ananthanarayanan, V.S., Brahmachari, S.K. and Pattabiraman, N. (1984). Proline-containing β-turns in peptides and proteins: analysis of structural data on globular proteins. Arch. Biochem. Biophys. 232, 482–495.

    Google Scholar 

  • Anfinsen, C. (1973). Principles that govern the folding of protein chains. Science. 181, 223–230.

    Google Scholar 

  • Birkemo, G.A., O’Sullivan, O., Ross, R.P. and Hill, C. (2009). Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J. Appl. Microbiol. 106, 233–240.

    Google Scholar 

  • Byler, D.M., Farrell, H.M., Jr. and Susi, H. (1988). Raman spectroscopic study of casein structure. J. Dairy Sci. 71, 2622–2639.

    Google Scholar 

  • Chanat, E., Martin, P. and Olivier-Bousquet M. (1999). αS1-Casein is required for the efficient transport of β- and κ-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci. 112, 3399–3412.

    Google Scholar 

  • Chu, B., Zhou, Z., Wu, G. and Farrell, H.M., Jr. (1995). Laser light scattering of model casein solutions: effects of high temperature. J. Coll. Interf. Sci. 170, 102–112.

    Google Scholar 

  • Cohen, F.E., Abarbanel, R.M., Kuntz, I.D. and Fletterick, R.J. (1986). Turn prediction in proteins using a pattern-matching approach. Biochemistry. 25, 266–275.

    Google Scholar 

  • Creamer, L.K., Richardson, T. and Parry, D.A.D. (1981). Secondary structure of bovine αS1- and β-caseins in solution. Arch. Biochem. Biophys. 211, 689–696.

    Google Scholar 

  • Curley, D.M., Kumosinski, T.F., Unruh, J.J. and Farrell, H.M., Jr. (1998). Changes in the secondary structure of bovine casein by FTIR: effects of calcium and temperature. J. Dairy Sci. 81, 3154–3162.

    Google Scholar 

  • Douglas, F.W., J., Greenberg, R., Farrell, H.M., Jr. and Edmondson, L.F. (1981). Effects of ultra-high-temperature pasteurization on milk proteins. J. Agr. Food Chem. 29, 11–15.

    Google Scholar 

  • Downey, W.K. and Murphy, R.F. (1970). The temperature dependent dissociation of β-casein from bovine casein micelles and complexes. J. Dairy Res. 37, 361–372.

    Google Scholar 

  • Dunker A.K., Oldfield, C.J., Meng, J., Romero, P., Yang, J.Y., Chen, J.W., Vacic, V., Obradovic, Z. and Uversky, V.N. (2008). The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9 Suppl 2, S1.

    Google Scholar 

  • Farrell, H.M., Jr. (1988). Physical equilibria: proteins, in, Fundamentals of Dairy Chemistry, 3rd edn., N. Wong, ed., Van Nostrand, Reinhold, New York. pp. 461–510.

    Google Scholar 

  • Farrell, H.M., Jr., Kumosinski, T.F., Cooke, P.H., King, G., Hoagland, P.D., Wickham, E.D., Dower, H.J. and Groves, M.L. (1996). Particle sizes of purified κ-casein: metal effect and correspondence with predicted 3D models. J. Protein Chem. 15, 435–445.

    Google Scholar 

  • Farrell, H.M., Jr., Wickham, E.D., Unruh, J.J., Qi, P.X. and Hoagland, P.D. (2001). Secondary structural analysis of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization. Food Hydrocoll. 15, 341–354.

    Google Scholar 

  • Farrell, H.M., Jr., Kumosinski, T.F., Malin, E.L. and Brown, E.M. (2002a). The caseins of milk as calcium binding proteins, in, Methods in Molecular Biology, Vol. 172, Calcium Binding Protein Protocols, Vol. 1, H.J. Vogel, ed., Humana Press, Totowa, NJ. pp. 97–140.

    Google Scholar 

  • Farrell, H.M., Jr., Qi, P.X., Brown, E.M., Cooke, P.H., Tunick, M.H., Wickham, E.D. and Unruh J.J. (2002b). Molten globule structures in milk proteins: implications for potential new structure-function relationships. J. Dairy Sci. 89, 459–471.

    Google Scholar 

  • Farrell, H.M., Jr., Qi, P.X., Wickham, E.D., and Unruh, J.J. (2002c). Secondary structural studies of bovine caseins: structure and temperature dependence of β-casein phosphopeptide (1–25) as analyzed by circular dichroism, FTIR spectroscopy, and analytical ultracentrifugation. J. Protein Chem. 21, 307–321.

    Google Scholar 

  • Farrell, H.M., Jr., Brown, E.M., Hoagland, P.D. and Malin, E.L. (2003a). Higher order structures of caseins: a paradox? in, Advanced Dairy Chemistry, 3rd edn., Vol. 1, Proteins Part A, P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic, Plenum Publishers, New York, NY. pp. 203–231.

    Google Scholar 

  • Farrell, H.M., Jr., Cooke, P.H., Wickham, E.D., Piotrowski, E.D. and Hoagland, P.D. (2003b). Environmental influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J. Protein Chem. 22, 259–273.

    Google Scholar 

  • Farrell, H.M., Jr., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, Κ.F. and Swaisgood H.E. (2004). Nomenclature of the proteins of cows’ milk sixth revision. J. Dairy Sci. 87, 1641–1674.

    Google Scholar 

  • Farrell, H.M., Jr., Malin, E.L., Brown, E.M. and Qi, P.X. (2006a). Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr. Op. Coll. & Interf. Sci. 11, 135–147.

    Google Scholar 

  • Farrell, H.M., Jr., Qi, P.X. and Uversky V.N. (2006b). New views of protein structure: implications for potential new protein structure-function relationships, in, Biopolymers: Molecules, Clusters, Networks, and Interactions, M.L. Fishman, P.X. Qi and L. Wicker, eds., American Chemical Society, Washington, DC. pp. 1–18.

    Google Scholar 

  • Farrell, H.M., Jr., Qi, P.X. and Uversky V.N. (2006c). New views of protein structure: applications to the caseins: protein structure and functionality, in, Advances in Biopolymers: Molecules ,Clusters, Networks, and Interactions, M.L. Fishman, P.X. Qi and L. Wicker, eds., American Chemical Society, Washington, DC. pp 52–70.

    Google Scholar 

  • Farrell, H.M., Jr., Malin, E.L., Brown, E.M. and Mora-Gutierrez A. (2009). Review of the chemistry of αS2-casein and the generation of a homologous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353.

    Google Scholar 

  • Garnier, J., Osguthorpe, D.J. and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120.

    Google Scholar 

  • Graham, E.R.B., Malcolm, G.M. and McKenzie, H.A. (1984). On the isolation and conformation of bovine β-casein A1. Int. J. Biol. Macromol. 6, 155–161.

    Google Scholar 

  • Groves, M.L., Dower, H.J. and Farrell, H.M., Jr., (1992). Reexamination of the polymeric distributions of κ-casein isolated from bovine milk. J. Protein Chem. 11, 21–28.

    Google Scholar 

  • Groves, M.L., Wickham, E.D. and Farrell, H.M., Jr., (1998). Environmental effects on disulfide bonding patterns of bovine κ-casein. J. Protein Chem. 17, 73–84.

    Google Scholar 

  • Halfmann, R. and Lindquist, S. (2010). Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330, 629–632.

    Google Scholar 

  • Haque, Z., Kristjansson, M. and Kinsella, J.E. (1987). Interaction between κ-casein and β-lactoglobulin: possible mechanism. J. Agric. Food Chem. 35, 644–649.

    Google Scholar 

  • Hoagland, P.D., Unruh, J.J., Wickham, E.D. and Farrell, H.M., Jr. (2001). Secondary structure of bovine αS2-casein: theoretical and experimental approaches. J. Dairy Sci. 84, 1944–1949.

    Google Scholar 

  • Holt, C. and Sawyer, L. (1993). Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the alpha-s1-caseins, beta-caseins and kappa-caseins. J. Chem. Soc. Faraday Trans. 89, 2683–2692.

    Google Scholar 

  • Horne, D.S. (1998). Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177.

    Google Scholar 

  • Horne, D.S. (2006). Casein micelle structure: models and muddles. Curr. Opi. Coll. & Inter. Sci. 11, 146–153.

    Google Scholar 

  • Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E. and Pratt, L.R. (1998). The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Nat. Acad. Sci. USA. 95, 1552–1555.

    Google Scholar 

  • Huq, N.L., Cross, K.J. and Reynolds, E.C. (1995). A 1H NMR study of the casein phosphopeptide αS1-casein (59–79). Biochim. Biophys. Acta. 1247, 201–208.

    Google Scholar 

  • Ingber, D.E. (1998). The architecture of life. Scientific American. 278(1), 48–57.

    Google Scholar 

  • Kumosinski, T.F. and Farrell, H.M., Jr. (1991). Calcium-induced associations of the caseins: thermodynamic linkage of calcium binding to colloidal stability of casein micelles. J. Protein Chem. 10, 3–16.

    Google Scholar 

  • Kumosinski, T.F. and Farrell, H.M., Jr. (1994). Solubility of proteins: protein-salt-water interactions, in, Protein Functionality in Food Systems, N.S. Hettiarachchy and G.R. Ziegler, eds., Marcel Dekker, Inc., New York, pp. 39–77.

    Google Scholar 

  • Kumosinski, T.F., Pessen, H., Farrell, H.M., Jr. and Brumberger, H. (1988). Determination of the quaternary structural states of bovine casein by small-angle X-ray scattering: submicellar and micellar forms. Arch. Biochem. Biophys. 266, 548–561.

    Google Scholar 

  • Kumosinski, T.F., Brown, E.M. and Farrell, H.M., Jr. (1993a) Three dimensional molecular modeling of bovine caseins: an energy-minimized β-casein structure. J. Dairy Sci., 76, 931–945.

    Google Scholar 

  • Kumosinski, T.F., Brown, E.M. and Farrell, H.M., Jr. (1993b). Three dimensional molecular modeling of bovine caseins: an energy minimized κ-casein structure. J. Dairy Sci. 76, 2507–2520.

    Google Scholar 

  • Kumosinski, T.F., Brown, E.M. and Farrell, H.M., Jr. (1994a). Predicted energy minimized αS1-casein working model, in, Molecular Modeling from Virtual Tools to Real Problems, T.F. Kumosinski and M.N. Liebman, eds., ACS Symposium Series 576. American Chemical Society, Washington, DC. pp. 368–390.

    Google Scholar 

  • Kumosinski, T.F., King, G. and Farrell, H.M., Jr. (1994b). An energy minimized casein submicelle working model. J. Protein Chem. 13, 681–700.

    Google Scholar 

  • Kumosinski, T.F., King, G. and Farrell, H.M., Jr. (1994c). Comparison of the three dimensional molecular models of bovine submicellar caseins with small-angle X-ray scattering. Influence of protein hydration. J. Protein Chem. 13, 701–714.

    Google Scholar 

  • Kumosinski, T.F., Uknalis, J.J., Cooke, P.H. and Farrell, H.M., Jr. (1996). Correlation of refined models for casein submicelles with electron microscopic studies of casein. Lebens. Wiss. Technol. 29, 326–333.

    Google Scholar 

  • Le Parc, A., Leonil, J. and Chanat, E. (2010). αS1-Casein, which is necessary for efficient ER-Golgi casein transport, is also present in a tightly membrane associated form. BMC Cell Biology 11, 65.

    Google Scholar 

  • Malin, E.L., Brown, E.M., Wickham, E.D. and Farrell, H.M., Jr. (2005). Contributions of terminal peptides to the associative behavior of αS1-casein. J. Dairy Sci. 88, 2318–2328.

    Google Scholar 

  • Mora-Gutierrez, A., Kumosinski, T.F. and Farrell, H.M., Jr. (1997). 17O NMR studies of bovine and caprine casein hydration and activity in deuterated sugar solutions. J. Agr. Food Chem. 45, 4545–4553.

    Google Scholar 

  • Niewold, T.A., Murphy, C.L., Hulskamp-Koch, C.A., Tooten, P.C. and Gruys, E. (1999). Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid: Int. J. Exp. Clin. Invest. 6, 244–249.

    Google Scholar 

  • Onuchic, J.N., Nymeyer, A.E., Garcia, A.E., Chahine, J. and Socci, N.D. (2000). The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv. Protein Chem. 53, 87–152.

    Google Scholar 

  • Palmer, D.S., Christensen, A.U., Sorensen, J., Celik, L., Qvist, K.B. and Schiott, B. (2010) Bovine chymosin: a computational study of recognition and binding of bovine κ-casein. Biochemistry. 49, 2563–2573.

    Google Scholar 

  • Paulsson, M. and Dejmek, P. (1990). Thermal denaturation of whey proteins in mixtures with caseins studied by differential scanning calorimetry. J. Dairy Sci. 73, 590–600.

    Google Scholar 

  • Pepper, L. (1972). Casein interactions as studied by gel chromatography and ultracentrifugation. Biochim. Biophys. Acta. 278, 147–154.

    Google Scholar 

  • Pepper, L. and Farrell, H.M., Jr. (1982). Interactions leading to the formation of casein submicelles. J. Dairy Sci. 65, 2259–2266.

    Google Scholar 

  • Qi, P.X., Wickham, E.D., Piotrowski, E.G., Faegerquist, C.K., and Farrell, H.M., Jr. (2005). Implication of C-terminal deletion on the structure and stability of bovine β-casein. Protein J. 24, 431–444.

    Google Scholar 

  • Schmidt, D.G. (1982). Association of caseins and casein micelle structure, in, Developments in Dairy Chemistry, P.F. Fox, ed., Applied Science Publishers Ltd., London, pp. 61–86.

    Google Scholar 

  • Schmidt, D.G. and Payens, T.A.J. (1976). Micellar aspects of casein, in, Surface and Colloid Science, Vol. 9, E. Matijevic, ed., John Wiley and Sons, New York, pp. 165–229.

    Google Scholar 

  • Slattery, C.W. and Evard, R. (1973). A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta. 317, 529–538.

    Google Scholar 

  • Snoeren, T., van Markwijk, H.M.B. and van Montfort R. (1980). Some physical chemical properties of bovine αS2-casein. Biochim. Biophys. Acta. 622, 268–276.

    Google Scholar 

  • Sood, S.M., Lekic, T., Jhawar, H., Farrell, H.M., Jr. and Slattery, C.W. (2006). Reconstituted micelle formation using reduced, carboxymethylated bovine κ-casein and human β-casein. Protein J 25, 352–360.

    Google Scholar 

  • Steinbacher, S., Seckler, R., Miller, S., Steipe, B., Huber, R. and Reinemer, P. (1994). Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386.

    Google Scholar 

  • Swaisgood, H.E. (1982) Chemistry of milk proteins, in, Developments in Dairy Chemistry, Vol. 1, P.F. Fox, ed., Applied Science Publishers, London, pp. 1–60.

    Google Scholar 

  • Syme, C.D., Blanch, E.W., Holt, C., Jakes, R., Goedert, M., Hecht, L. and Barron, L.D. (2002). A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insights into the structure and behavior of natively unfolded proteins. Eur. J. Biochem. 269, 148–156.

    Google Scholar 

  • Thorn, D.C., Meehan, S., Sunde, M., Rekas, A., Gras, S.L., MacPhee, C.E., Dobson, C.M., Wilson, M.K. and Carver, J.A. (2005). Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS- and β-casein. Biochemistry 44, 17027–17036.

    Google Scholar 

  • Thorn, D.C., Ecroyd, H., Sunde, M., Poon, S. and Carver, J.A. (2008). Amyloid fibril formation by bovine milk αS2-casein occurs under physiological conditions yet is prevented by its natural counterpart αS1-casein. Biochemistry 47, 3926–3936.

    Google Scholar 

  • Thurn, A., Buchard, W. and Niki, R. (1987). Structure of casein micelles II. αS1-casein. Coll. Polym. Sci. 265, 897–902.

    Google Scholar 

  • Tompa, P. (2002). Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533.

    Google Scholar 

  • Tompa, P. and Kalmar L. (2010). Power law distribution defines structural disorder as a structural element directly linked with function. J. Mol. Biol. 403, 346–350.

    Google Scholar 

  • Tunick, M.H., Cooke, P.H., Malin E.L., Smith, P.W. and Holsinger, V.H. (1997). Reorganization of casein submicelles in Mozzarella cheese during storage. Int. Dairy J. 7, 149–155.

    Google Scholar 

  • Uversky, V.N. (2002). Natively unfolded proteins: a point where biology waits for physics. Protein Science 11, 739–756.

    Google Scholar 

  • Waugh, D.F. (1970). Formation and structure of casein micelles, in, Milk Proteins Chemistry and Molecular Biology Vol. 2, H.A. McKenzie, ed., Academic Press, New York, London, pp. 3–85.

    Google Scholar 

  • Xie, D., Bhakuni, V. and Freire, E. (1991). Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo-α-lactalbumin. Biochemistry. 30, 10673-10678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Farrell Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farrell, H.M., Brown, E.M., Malin, E.L. (2013). Higher Order Structures of the Caseins: A Paradox?. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_5

Download citation

Publish with us

Policies and ethics