Skip to main content

Milk Proteins: Introduction and Historical Aspects

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

This chapter provides a general overview of the milk protein system: the history of its elucidation, heterogeneity, fractionation and characterization of the molecular properties of the principal proteins. Many of the minor proteins are also described. In addition to serving as sources of amino acids, many of the whey proteins have biological functions, which are now attracting much attention. The caseins exist as large colloidal aggregates, micelles, the structure and properties of which have been studied for more than 100 years; the history of these developments and the present views on the structure and properties of the casein micelle are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addeo, F., Mercier, J.-C. and Ribadeau-Dumas, B. (1977). The caseins of buffalo milk. J. Dairy Res. 44, 455–468.

    Google Scholar 

  • Aimutis, W.R. and Eigel, W.N. (1982). Identification of l-casein as plasmin-derived fragments of bovine αs1-casein. J. Dairy Sci. 65, 175–181.

    Google Scholar 

  • Akers, R.M. (2000). Selection for milk production from a lactation biology viewpoint. J. Dairy Sci. 83, 1151–1158.

    Google Scholar 

  • Alexander, J. (1910). Some colloid-chemical aspects of digestion, with ultramicroscopic observations. J. Am. Chem. Soc. 32, 680–687.

    Google Scholar 

  • Amundson, C.H., Watanawamichakorn, S. and Hill, C.G. (1982). Production of enriched protein fractions of β-lactoglobulin and α-lactalbumin from cheese whey. J. Food Proc. Preserv. 6, 55–71.

    Google Scholar 

  • Andersson, J. and Mattiasson, B. (2006). Simulated moving bed technology with a simplified approach for protein purification: Separation of lactoperoxidase and lactoferrin from whey protein concentrate. J. Chrom. A. 1107, 88–95.

    Google Scholar 

  • Andrews, A.T. (1983). Proteinases in normal bovine milk and their action on casein. J. Dairy Res. 50, 45–55.

    Google Scholar 

  • Andrews, A.T. and Alichanidis, E. (1983). Proteolysis of caseins and the proteose-peptone fraction of milk. J. Dairy Res. 50, 275–290.

    Google Scholar 

  • Andrews, A.T., Williams, R.J.H., Brownsell, V.L., Isgrove, F.H., Jenkins, K. and Kanekanian, A.D. (2006). β-CN-5P and β-CN-4P components of bovine milk proteose-peptone: Large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234–241.

    Google Scholar 

  • Annan, W.D. and Manson, W. (1969). A fractionation of the αs-casein complex of bovine milk. J. Dairy Res. 36, 259–268.

    Google Scholar 

  • Armaforte, E., Curran, E., Huppertz, T., Ryan, C.A., Caboni, M.F., O’Connor, P., Ross, P., Hirtz, C., Sommerer, N., Chevalier, F. and Kelly, A.L. (2010). Proteins and proteolysis in pre-term and term human milk and possible implications for infant formulae. Int. Dairy J. 20, 715–723.

    Google Scholar 

  • Armstrong, J.McD., McKenzie, H.A. and Sawyer, W.H. (1967). On the fractionation of β-lactoglobulin and α-lactalbumin. Biochim. Biophys. Acta 147, 60–72.

    Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1955). Occurrence of different b-lactoglobulins in cow’s milk. Nature 176, 218–219.

    Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1957). Improved method for the preparation of crystalline β-lactoglobulin and α-lactalbumin from cow’s milk. Biochem. J. 65, 273–277.

    Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1959). A procedure for the routine determination of the various non-casein proteins in milk. Proc. 15th Int. Dairy Congr. (London) 3, 1631–1637.

    Google Scholar 

  • Associates of L.A. Rogers. (1935). Fundamentals of Dairy Science, 2nd edn. Reinhold Publishing Corporation, New York.

    Google Scholar 

  • Atkinson, S.A. and Lonnerdal, B. (1989). Protein and Non-Protein Nitrogen in Human Milk. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Attia, H., Kherouatou, N., Nasri, M. and Khorcheni, T. (2000). Characterization of the dromedary milk casein micelle and study of its changes during acidification. Lait 80, 503–515.

    Google Scholar 

  • Barth, C.A. and Schlimme, E. (1988). Milk Proteins: Nutritional, Clinical, Functional and Technological Aspects. Springer Verlag, New York.

    Google Scholar 

  • Berzelius, J.J. (1814). Uber Thierische Chemie. Schweiggers J. Chemie Physik. 1, 261–280.

    Google Scholar 

  • Blackburn, D.G., Hayssen, V. and Murphy, C.J. (1989). The origins of lactation and the evolution of milk: a review with new hypotheses. Mammal Rev. 19, 1–26.

    Google Scholar 

  • Blakesley, R.W. and Boezi, J.A. (1977). A new staining technique for proteins in polyacrylamide gels using Coomassie Brilliant Blue G250. Anal. Biochem. 82, 580–582.

    Google Scholar 

  • Bordin, G., Cordeiro Raposo, F., de la Calle, B. and Rodriguez, A.R. (2001). Identification and quantification of major bovine milk proteins by liquid chromatography. J. Chrom. A 928, 63–76.

    Google Scholar 

  • Bouchoux, A., Gesan-Guiziou, G., Perez, J. and Cabane, B. (2010). How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study. Biophys. J. 99, 3754–3762.

    Google Scholar 

  • Brew, K. (2003). α-Lactalbumin, in, Advanced Dairy Chemistry—Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 387–419.

    Google Scholar 

  • Brew, K. and Grobler, J.A. (1992). α-Lactalbumin, in, Advanced Dairy Chemistry, Vol. 1, Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 191–229.

    Google Scholar 

  • Brinkmann, C.R., Thiel, S., Larsen, M.K., Petersen, T.E., Jensenius, J.C. and Heegaard, C.W. (2011). Preparation and comparison of cytotoxic complexes formed between oleic acid and either bovine or human α-lactalbumin. J. Dairy Sci. 94, 2159–2170.

    Google Scholar 

  • Brunner, J.R. (1981). Cow milk proteins: twenty-five years of progress. J. Dairy Sci. 64, 1038–1045.

    Google Scholar 

  • Brunner, J.R., Ernstrom, C.A., Hollis, R.A., Larson, B.L., Whitney, R.McL. and Zittle, C.A. (1960). Nomenclature of the proteins of bovine milk—first revision. J. Dairy Sci. 43, 901–911.

    Google Scholar 

  • Buchheim, W., Lund, S. and Scholtissek, J. (1989). Vergleichende Untersuchungen zur Struktur und Grosse von Caseinmicellen in der Milch verschiedener Species. Kieler Milchw. Forsch. 41, 253–265.

    Google Scholar 

  • Campbell, B. and Petersen, W.E. (1959). Antibodies in milk for protection against human disease. Milchwissenschaft 14, 469–473.

    Google Scholar 

  • Campbell, S.M., Rosen, J.M., Henighausen, L.G., Strech-Jurk, U. and Sippel, A.E. (1984). Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12, 8685–8697.

    Google Scholar 

  • Carroll, T.J., Patel, H.A., Gonzalez-Martin, M.A., Dekker, J.W., Collett, M.A. and Lubbers, M.W. (2006). High pressure processing of bioactive compositions. World Patent WO2006/096074 A1.

    Google Scholar 

  • Carter, D.C. and Ho, J.X. (1994). Structure of serum albumin. Adv. Protein Chem. 45, 153–205.

    Google Scholar 

  • Cayot, P. and Lorient, D. (1998). Structures et Technofonctions des Proteins du Lait. Lavoisier Technique & Documentation, Paris.

    Google Scholar 

  • Chanat, E., Martin, P. and Ollivier-Bousquet, M. (1999). αs1-Casein is required for the efficient transport of β- and κ-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci. 112, 3399–3412.

    Google Scholar 

  • Chatterton, D.E.W., Smithers, G., Roupas, P. and Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing. Int. Dairy J. 16, 1229–1240.

    Google Scholar 

  • Cheang, B. and Zydney, A.L. (2004). A two-stage ultrafiltration process for fractionation of whey protein isolate. J. Membrane Sci. 231, 159–167.

    Google Scholar 

  • Chevalier, F. (2011a). Analytical methods: Electro­phoresis, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 1, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA, pp. 185–192.

    Google Scholar 

  • Chevalier, F. (2011b). Milk proteins: proteomics, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA, pp. 843–847.

    Google Scholar 

  • Creamer, L.K. and Richardson, T. (1984). Anomalous behavior of bovine αs1- and β-caseins on gel electrophoresis in sodium dodecyl sulfate buffer. Arch. Biochem. Biophys. 234, 476–486.

    Google Scholar 

  • Creamer, L.K., Berry, G.P. and Mills, O.E. (1977). A study of the dissociation of β-casein from the bovine casein micelle at low temperature. N. Z. J. Dairy Sci. Technol. 12, 58–66.

    Google Scholar 

  • Dalgleish, D.G. (1998). Casein micelles as colloids: Surface structures and stabilities. J. Dairy Sci. 81, 3013–3018.

    Google Scholar 

  • Dalgleish, D.G. (2011). On the structural models of bovine casein micelles - review and possible improvements. Soft Matter 7, 2265–2272.

    Google Scholar 

  • Dandekar, A.M., Robinson, E.A., Appella, E. and Qasba, P.K. (1982). Complete sequence analysis of cDNA clones encoding rat whey phosphoprotein: homology to a protease inhibitor. Proc. Nat. Acad. Sci. U.S.A. 79, 3987–3991.

    Google Scholar 

  • Davis, J.G. and MacDonald, F.J. (1953). Richmond’s Dairy Chemistry, 5th edn. Charles Griffin & Co. Ltd., London.

    Google Scholar 

  • de Kruif, C.G. (1998). Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci. 81, 3019–3038.

    Google Scholar 

  • de Kruif, C.G. (1999). Casein micelle interactions. Int. Dairy J. 9, 183-188.

    Google Scholar 

  • De Kruif, C.G. and Holt, C. (2003). Casein micelle structure, functions and interactions, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 233–276.

    Google Scholar 

  • De Noni, I., Pellegrino, L., Cattaneo, S. and Resmini, P. (2007). HPLC of proteose peptones for evaluating ageing of packaged pasteurised milk. Int. Dairy J. 17, 12–19.

    Google Scholar 

  • De Wit, J.N. (2009). Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150oC. A review. Trends Food Sci. Technol. 20, 27–34.

    Google Scholar 

  • Demmer, J., Stasiuk, S.J., Grigor, M.R., Simpson, K.J. and Nicholas, K.R. (2001). Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). Biochim. Biophys. Acta 1522, 187–194.

    Google Scholar 

  • Desobry-Banon, S., Richard, F. and Hardy, J. (1994). Study of acid and rennet coagulation of high pressurized milk. J. Dairy Sci. 77, 3267–3274.

    Google Scholar 

  • Downey, W.K. and Murphy, R.F. (1970). The temperature-dependant dissociation of β-casein from bovine casein micelles and complexes. J. Dairy Res. 37, 361–375.

    Google Scholar 

  • Eigel, W.N. and Keenan, T.W. (1979). Identification of proteose peptone component 8-slow as a plasmin derived fragment of β-casein. Int. J. Biochem. 10, 529–535.

    Google Scholar 

  • Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell, H.M., Jr., Harwalkar, V.R., Jenness, R. and Whitney, R.McL. (1984). Nomenclature of proteins of cow’s milk, 5th revision. J. Dairy Sci. 67, 1559–1631.

    Google Scholar 

  • Eilers, H., Saal, R.N.J. and van der Waarden, M. (1947). Chemical and Physical Investigations on Dairy Products. Elsevier Publishing Company, Inc., New York.

    Google Scholar 

  • El-Agamy, E.I. (2007). The challenge of cow milk protein allergy. Small Ruminant Res. 68, 64–72.

    Google Scholar 

  • El-Negoumy, A.M. (1973). Separation of lambda casein and some of its properties. J. Dairy Sci. 56, 1486–1491.

    Google Scholar 

  • Ennis, M.P. and Mulvihill, D.M. (1999). Compositional characteristics of rennet caseins and hydration characteristics of the caseins in a model system as indicators of performance in Mozzarella cheese analogue manufacture. Food Hydrocolloid 13, 325–337.

    Google Scholar 

  • Evans, D.E. (1959). Milk composition of mammals whose milk is not normally used for human consumption. Dairy Sci. Abstr. 21, 277–288.

    Google Scholar 

  • Farah, Z. (1993). Composition and characteristics of buffalo milk. J. Dairy Res. 60, 603–626.

    Google Scholar 

  • Farrell, H.M., Jr. (1973). Models for casein micelle formation. J. Dairy Sci. 56, 1195–1206.

    Google Scholar 

  • Farrell, H.M., Jr. and Thompson, M.P. (1974). Physical equilibria: proteins, in, Fundamentals of Dairy Chemistry, 2nd edn., B.H. Webb, A.H. Johnson and J.A. Alford, eds., AVI Publishing Company, Inc., Westport, CT, pp. 442–473.

    Google Scholar 

  • Farrell, H.M., Jr., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F. and Swaisgood, H.E. (2004). Nomenclature of the proteins of cows’ milk—sixth revision. J. Dairy Sci. 87, 1641–1674.

    Google Scholar 

  • FitzGerald, R.J. and Meisel, H. (2003). Milk protein hydrolysates and bioactive peptides, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 675–698.

    Google Scholar 

  • Flower, D.R., North, A.C.T. and Sansom, C.E. (2000). The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta 1482, 9–24.

    Google Scholar 

  • Fox, K.K., Holsinger, V.H., Posati, L.P. and Pallansch, M.J. (1967). Separation of β-lactoglobulin from other milk serum proteins by trichloroacetic acid. J. Dairy Sci. 50, 1363–1367.

    Google Scholar 

  • Fox, P.F. (1981). Heat stability of milk: significance of heat induced acid formation in coagulation. Irish J. Food Sci. Technol. 5, 1–11.

    Google Scholar 

  • Fox, P.F. (1982). Developments in Dairy Chemistry, Volume 1: Proteins. Applied Science Publishers, London.

    Google Scholar 

  • Fox, P.F. (1989). Developments in Dairy Chemistry, Volume 4: Functional Proteins. Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Fox, P.F. (1992). Advanced Dairy Chemistry, vol. 1, Proteins: Molecular, Physico-Chemical and Biological Aspects. Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Fox, P.F. (2003). Milk proteins: general and historical aspects, in, Advanced Dairy Chemistry,–Volume 1; Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic-Plenum Publishers, New York, pp. 1–48.

    Google Scholar 

  • Fox, P.F. and Brodkorb, A. (2008). The casein micelle: Historical aspects, current concepts and significance. Int. Dairy J. 18, 677–684.

    Google Scholar 

  • Fox, P.F. and Guiney, J. (1972). A procedure for the fractionation of the α-casein complex. J. Dairy Sci. 39, 49–53.

    Google Scholar 

  • Fox, P.F. and McSweeney, P.L.H. (1998). Dairy Chemistry and Biochemistry. Chapman and Hall, London.

    Google Scholar 

  • Gallagher, D.P., Cotter, P.F. and Mulvihill, D.M. (1997). Porcine milk proteins: a review. Int. Dairy J. 7, 99–118.

    Google Scholar 

  • Garnier, J. (1973). Models of casein micelle structure. Neth. Milk Dairy J. 27, 240–248.

    Google Scholar 

  • Garnier, J. and Ribadeau-Dumas, B. (1970). Structure of the casein micelle. J. Dairy Res. 37, 493–504.

    Google Scholar 

  • Gaucheron, F., Famelart, M.H., Mariette, F., Raulot, K., Michel, F. and Le Graet, Y. (1997). Combined effects of temperature and high-pressure treatments on physicochemical characteristics of skim milk. Food Chem. 59, 439–447.

    Google Scholar 

  • Gaucheron, F., Molle, D. and Leonil, B.J. (1999). Identification of low molar mass peptides released during sterilisation of milk. Int. Dairy J. 9, 515–521.

    Google Scholar 

  • Ginger, M.R. and Grigor, M.R. (1999). Comparative aspects of milk caseins. Comp. Biochem. Physiol, Part B 124, 133–145.

    Google Scholar 

  • Girardet, J.-M. and Linden, G. (1996). PP 3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res. 63, 333–350.

    Google Scholar 

  • Gordon, W.G. (1971). α-Lactalbumin, in, Milk Proteins: Chemistry and Molecular Biology, H.A. McKenzie, ed., Academic Press, New York, 33pp. 1–365.

    Google Scholar 

  • Gordon, W.G. and Semmett, W.F. (1953). Isolation of crystalline α-lactalbumin from milk. J. Am. Chem. Soc. 75, 328–330.

    Google Scholar 

  • Guo, M.R., Fox, P.F., Flynn, A. and Kindstedt, P.S. (1995). Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci. 78, 2336–2344.

    Google Scholar 

  • Hagiwara, K., Kikuchi, T., Endo, Y., Huqun, Usui, K., Takahashi, M., Shibata, N., Kusakabe, T., Xin, H., Hoshi, S., Miki, M., Inooka, N., Tokue, Y. and Nukiwa, T. (2003). Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J. Immunol 170, 1973–1979.

    Google Scholar 

  • Hajjoubi, S., Rival-Gervier, S., Hayes, H., Floriot, S., Eggen, A., Pivini, F., Chardon, P., Houdebine, L.-M. and Thepot, D. (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104–112.

    Google Scholar 

  • Hambling, S.G., McAlpine, A.S. and Sawyer, L. (1992). β-Lactoglobulin, in, Advanced Dairy Chemistry, Vol. 1, Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 141–190.

    Google Scholar 

  • Harland, H.A., Coulter, S.T. and Jenness, R. (1955). Natural variation of the milk serum proteins as a limitation of their use in evaluating the heat treatment of milk. J. Dairy Sci. 38, 858–869.

    Google Scholar 

  • Havea, P. (2006). Protein interactions in milk protein concentrate powders. Int. Dairy J. 16, 415–422.

    Google Scholar 

  • Havea, P., Singh, H. and Creamer, L.K. (2000). Formation of new protein structures in heated mixtures of BSA and α-lactalbumin. J. Agr. Food Chem. 48, 1548–1556.

    Google Scholar 

  • Hennighausen, L.G. and Sippel, A.E. (1982). Mouse whey acidic protein is a novel member of the family of ‘four-disulphide core’ proteins. Nucleic Acids Res. 10, 2677–2684.

    Google Scholar 

  • Hewedi, M.M., Mulvihill, D.M. and Fox, P.F. (1985). Recovery of milk protein by ethanol precipitation. Irish J. Food Sci. Technol. 9, 11–23.

    Google Scholar 

  • Hill, R.J. and Wake, R.J. (1969). Amphiphilic nature of α-casein as the basis for its micelle stabilizing property. Nature 221, 635–639.

    Google Scholar 

  • Hindle, E.J. and Wheelock, J.V. (1970). The release of peptides and glycopeptides by the action of heat on cow’s milk. J. Dairy Res. 37, 397–405.

    Google Scholar 

  • Hipp, N.J., Groves, M.L., Custer, J.H. and McMeekin, T.L. (1952). Separation of α, β and γ caseins. J. Dairy Sci. 35, 272–281.

    Google Scholar 

  • Holt, C. (1992). Structure and stability of bovine casein micelles. Adv. Prot. Chem. 43, 63–151.

    Google Scholar 

  • Holt, C. (1994). The biological function of casein, in, Yearbook 1994, The Hannah Institute, Ayr, Scotland, pp. 60–68.

    Google Scholar 

  • Holt, C. (1998). Casein micelle substructure and calcium phosphate interactions studied by Sephacryl column chromatography. J. Dairy Sci. 81, 2994–3003.

    Google Scholar 

  • Holt, C. and Horne, D. (1996). The hairy casein micelle: evolution of the concept and its implications for dairy technology. Neth. Milk Dairy J. 50, 85–111.

    Google Scholar 

  • Holt, C. and Sawyer, L. (1993). Caseins as rheomorphic proteins: interpretation of primary and secondary structures of αs1-, β- and κ-caseins. J. Chem. Soc. Faraday Trans. 89, 2683–2692.

    Google Scholar 

  • Horne, D.S. (1998). Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177.

    Google Scholar 

  • Horne, D.S. (2002). Casein structure, self-assembly and gelation. Curr. Opin. Colloid In. 7, 456–461.

    Google Scholar 

  • Horne, D.S. (2003). Ethanol stability, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 975–999.

    Google Scholar 

  • Horne, D.S. (2006). Casein micelle structure: models and muddles. Curr. Opin. Colloid In. 11, 148–153.

    Google Scholar 

  • Horne, D.S. (2011). Casein, micellar structure, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds, Academic Press, San Diego, CA, USA, pp 772–779.

    Google Scholar 

  • Huppertz, T., Kelly, A.L. and Fox, P.F. (2002). Effects of high pressure on constituents and properties of milk. Int. Dairy J. 12, 561–572.

    Google Scholar 

  • Huppertz, T., Fox, P.F. and Kelly, A.L. (2004). Properties of casein micelles in high pressure-treated bovine milk. Food Chem. 87, 103–110.

    Google Scholar 

  • Huppertz, T., Hennebel, J.-B., Considine, T., Ur-Rehman, S. Kelly, A.L. and Fox, P.F. (2006). A method for the large-scale isolation of β-casein. Food Chem. 99, 45–50.

    Google Scholar 

  • Hurley, W.L. (2003). Immunoglobulins in mammary secretions, in, Advanced Dairy Chemistry —Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 421–447.

    Google Scholar 

  • IDF. (1991). Chemical Methods for Evaluation of Proteolysis in Cheese Maturation. Bulletin 261. International Dairy Federation, Brussels.

    Google Scholar 

  • Ikeda, K., Kato, M., Yamanouchi, K., Naito, K. and Tojo, H. (2002). Novel development of mammary glands in the nursing transgenic mouse ubiquitously expressing WAP gene. Exp Anim. 51, 395–399.

    Google Scholar 

  • Imafidon, G.F., Farkye, N.Y. and Spanier, A.M. (1997). Isolation, purification and alteration of some functional groups of major milk proteins: a review. CRC Crit. Rev. Food Sci. Nutr. 37, 663-689.

    Google Scholar 

  • Innocente, N., Corradini, C., Blecker, C. and Paquot, M. (1998). Emulsifying properties of the total fraction and the hydrophobic fraction of bovine milk proteose-peptones. Int. Dairy J. 8, 981-985.

    Google Scholar 

  • Innocente, N., Comparin, D. and Corradini, C. (2002). Proteose-peptone whey fraction as emulsifier in ice-cream preparation. Int. Dairy J. 12, 69–74.

    Google Scholar 

  • Innocente, N., Biasutti, M. and Blecker, C. (2011). HPLC profile and dynamic surface properties of the proteose-peptone fraction from bovine milk and from whey protein concentrate. Int. Dairy J. 21, 222–228.

    Google Scholar 

  • Jenness, R. (1973). Caseins and caseinate micelles of various species. Neth. Milk Dairy J. 27, 251–257.

    Google Scholar 

  • Jenness, R. (1979). Comparative aspects of milk proteins. J. Dairy Res. 46, 197–210.

    Google Scholar 

  • Jenness, R. (1982). Inter-species comparison of milk proteins, in, Developments in Dairy Chemistry, Vol. 1, Proteins, P.F. Fox, ed., Applied Science Publishers, London, pp. 87–114.

    Google Scholar 

  • Jenness, R. and Holt, C. (1987). Casein and lactose concentrations in milk of 31 species are negatively correlated. Experentia 43, 1015–1018.

    Google Scholar 

  • Jenness, R. and Patton, S. (1959). Principles of Dairy Chemistry. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Jenness, R. and Sloan, R.E. (1970). The composition of milks of various species: a review. Dairy Sci. Abstr. 32, 599–612.

    Google Scholar 

  • Jenness, R., Larson, B.L., McMeekin, T.L., Swanson, A.M., Whitnay, C.H. and Whitney, R.McL. (1956). Nomenclature of the proteins of bovine milk. J. Dairy Sci. 39, 536–541.

    Google Scholar 

  • Jensen, R.G. (1995). Handbook of Milk Composition. Academic Press, San Diego, CA.

    Google Scholar 

  • Johnson, S.W. (1868). How Crops Grow. Orange Judd & Co., New York.

    Google Scholar 

  • Jolles, P. (1966). Progress in the chemistry of casein. Agnew. Chem. Internat. Edit. 5, 558–566.

    Google Scholar 

  • Journet, M., Verite, R. and Vignon, B. (1975). L’azote non proteique du lait: factures de variation. Lait 55, 212–223.

    Google Scholar 

  • Kappler, S., Farah, Z. and Puhan, Z. (1998). Sequence analysis of Camelus dromedarius milk caseins. J. Dairy Sci. 65, 209–222.

    Google Scholar 

  • Karlsson, A.O., Ipsen, R. and Ardo, Y. (2007). Observations of casein micelles in skim milk concentrate by transmission electron microscopy. LWT - Food Sci. Technol. 40, 1102–1107.

    Google Scholar 

  • Kastle, J.H. and Roberts, N. (1909). The chemistry of milk, in, Milk and relation to public health, Washington, DC, USA. Bulletin 56, Hygienic Laboratory, Treasury Department, Government Printing Office, pp. 315–423.

    Google Scholar 

  • Kawasaki, K. and Weiss, K.M. (2003). Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl. Acad. Sci. USA, 100, 4060–4065.

    Google Scholar 

  • Kawasaki, K., Suzuki, T. and Weiss, K.M. (2004). Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl. Acad. Sci. USA. 101, 11356–11361.

    Google Scholar 

  • Kawasaki, K., Lafont, A.-G. and Sire, J.-Y. (2011). The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol. 28, 2053–2061.

    Google Scholar 

  • Kehoe, J.J., Morris, E.R. and Brodkorb, A. (2007). The influence of bovine serum albumin on β-lactoglobulin denaturation, aggregation and gelation. Food Hydrocolloids 21, 747–755.

    Google Scholar 

  • Kelly, A.L. and McSweeney, P.L.H. (2003). Advanced Dairy Chemistry —Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 495–521.

    Google Scholar 

  • Kelly, P. M., Kelly, J., Mehra, R., Oldfield, D. J., Raggett, E. and O’Kennedy, T. (2000). Implementation of integrated membrane processes for pilot scale development of fractionated milk components. Lait 80, 139–153.

    Google Scholar 

  • Kimura, T., Taneya, S. and Kanaya, K. (1979). Observation of internal structure of casein submicelles by means of ion beam sputtering. Milchwissenschaft 34, 521–524.

    Google Scholar 

  • Kinekawa, Y.-I. and Kitabatake, N. (1996). Purification of β-lactoglobulin from whey protein concentrate by pepsin treatment. J. Dairy Sci. 79, 350–358.

    Google Scholar 

  • Kinsella, J.E. (1985). Milk proteins: physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nutr. 21, 197–287.

    Google Scholar 

  • Kinsella, J.E. and Whitehead, D.M. (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33, 343–438.

    Google Scholar 

  • Knoop, A.M., Knoop, E. and Wiechen, A. (1979). Sub-structure of synthetic casein micelles. J. Dairy Res. 46, 347–350.

    Google Scholar 

  • Kolar, C.K. and Brunner, J.R. (1969). Proteose-peptone fraction of bovine milk: distribution in the protein system. J. Dairy Sci. 52, 1541–1546.

    Google Scholar 

  • Kolar, C.W. and Brunner, J.R. (1970). Proteose-peptone fraction of bovine milk: lacteal serum components 5 and 8—casein-associated glycoproteins. J. Dairy Sci. 53, 997–1008.

    Google Scholar 

  • Konrad, G., Lieske, B. and Faber, W. (2000). A large-scale isolation of native β-lactoglobulin: characterisation of physicochemical properties and comparison with other methods. Int. Dairy J. 10, 713–721.

    Google Scholar 

  • Kontopidis, G., Holt, C. and Sawyer, L. (2004). Invited Review: β-Lactoglobulin: Binding properties, structure and function. J. Dairy Sci. 87, 785–796.

    Google Scholar 

  • Kristiansen, K.R., Otte, J., Ipsin, R. and Qvist, K.B. (1998). Large-scale preparation of β-lactoglobulin A and B by ultrafiltration and ion-exchange chromatography. Int. Dairy J. 8, 113–118.

    Google Scholar 

  • Kronman, M.J. (1989). Metal-ion binding and the molecular conformational properties of α-lactalbumin. Crit. Rev. Biochem. Mol. Biol. 24, 564–667.

    Google Scholar 

  • Kunz, C. and Lonnerdal, B. (1992). Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatrica 81, 107–112.

    Google Scholar 

  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 196–204.

    Google Scholar 

  • Laxminarayana, H. and Dastur, N.N. (1968). Buffaloes’ milk and milk products, parts I and II. Dairy Sci. Abstr. 30, 177–186, 231–241.

    Google Scholar 

  • Le Bars, D. and Gripon, J.-C. (1989). Specificity of plasmin towards bovine αs2-casein. J. Dairy Res. 56, 817–821.

    Google Scholar 

  • Le Bars, D. and Gripon, J.-C. (1993). Hydrolysis of αs1-casein by bovine plasmin. Lait 74, 337–344.

    Google Scholar 

  • Le Parc, A., Leonil, J. and Chanat, E. (2010). αs1-Casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly bound membrane-associated form. BMC Cell Biol. 11, 65.

    Google Scholar 

  • Le Roux, Y., Girardet, J.M., Humbert, G., Laurent, F. and Linden, G. (1995). Proteolysis in samples of quarter milk of varying somatic cell counts. 1. Comparison of some indicators of endogenous proteolysis in milk. J. Dairy Sci. 78, 1289–1297.

    Google Scholar 

  • Lefebvre-Cases, E., Gastaldi, E. and de la Fuente, B.T. (1998). Influence of chemical agents on interactions in dairy products: Effect of SDS on casein micelles. Colloid Surface B 11, 281–285.

    Google Scholar 

  • Lefevre, C.M., Sharp, J.A. and Nicholas, K.R. (2009). Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod. Fert. Develop. 21, 1015–1027.

    Google Scholar 

  • Linderstørm-Lang, K. and Kodama, S. (1929). Studies on casein. III. On the fractionation of casein. Compt. Rend. Trav. Lab. Carlsberg. Ser. Chim. 17, 1–116.

    Google Scholar 

  • Lindqvist, B. (1963). Casein and the action of rennin, parts I and II. Dairy Sci. Abstr. 25, 257–264; 299–308.

    Google Scholar 

  • Ling, E.R. (1944). A Textbook of Dairy Chemistry, 2nd edn. Chapman & Hall, London.

    Google Scholar 

  • Liskova, K., Kelly, A.L., O’Brien, N. and Brodkorb, A. (2010). Effect of denaturation of α-lactalbumin on the formation of BAMLET (bovine α-lactalbumin made lethal to tumor cells). J. Agric. Food Chem. 58, 4421–4427.

    Google Scholar 

  • Lonnerdal, B. and Forsum, E. (1985). Casein content of human milk. Am. J. Clin. Nutr. 41, 113–120.

    Google Scholar 

  • Lucey, J.A. (2011). Rennet-induced coagulation of milk, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 1, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, pp. 579–584.

    Google Scholar 

  • Lyster, R.L. (1972). Review of the progress of dairy science: chemistry of milk proteins. J. Dairy Res. 39, 279–318.

    Google Scholar 

  • Macy, I.G., Kelley, H. and Sloan, R. (1950). The composition of milks. Bulletin 119, National Research Council, Washington, DC.

    Google Scholar 

  • Mailliert, P. and Ribadeau-Dumas, B. (1988). Preparation of β-lactoglobulin and β-lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH. J. Food Sci. 53, 743–745, 852.

    Google Scholar 

  • Mann, M., Hendrickson, R.C. and Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Ann. Rev. Biochem. 70, 437–473.

    Google Scholar 

  • Manso, M.A., Leonil, J., Jan, G. and Gagnaire, V. (2005). Application of proteomics to the characterisation of milk and dairy products. Int. Dairy J. 15, 845–855.

    Google Scholar 

  • Marella, C., Muthukumarappan, K. and Metzger, L.E. (2011). Evaluation of commercially available, wide-pore ultrafiltration membranes for production of α-lactalbumin-enriched whey protein concentrate. J. Dairy Sci. 94, 1165–1175.

    Google Scholar 

  • Martin, P., Ferranti, P., Leroux, C. and Addeo, F. (2003). Non-bovine caseins: quantitative variability and molecular diversity, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 277–317.

    Google Scholar 

  • Martin, G.J.O., Williams, R.P.W. and Dunstan, D.E. (2007). Comparison of casein micelles in raw and reconstituted skim milk. J. Dairy Sci. 90, 4543–4551.

    Google Scholar 

  • Mather, I.H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83, 203–247.

    Google Scholar 

  • McConnell, M.A., Buchan, G., Borissenko, M.V. and Brooks, H.J.L. (2001). A comparison of IgG and IgG1 activity in an early milk concentrate from non-immunised cows and a milk from hyperimmunised animals. Food Res. Int. 34, 255–261.

    Google Scholar 

  • McGann, T.C.A. and Fox, P.F. (1974). Physicochemical properties of casein micelles reformed from urea-treated milk. J. Dairy Res. 41, 45–53.

    Google Scholar 

  • McKenzie, H.A. (1967). Milk proteins. Adv. Prot. Chem. 22, 55–234.

    Google Scholar 

  • McKenzie, H.A., ed. (1970). Milk Proteins: Chemistry and Molecular Biology, Vol. 1. Academic Press, New York.

    Google Scholar 

  • McKenzie, H.A., ed. (1971a). Milk Proteins: Chemistry and Molecular Biology, Vol. 2. Academic Press, New York.

    Google Scholar 

  • McKenzie, H.A. (1971b). Whole casein: isolation, properties, and zone electrophoresis, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic Press, New York, pp. 87–116.

    Google Scholar 

  • McKenzie, H.A. (1971c). β-Lactoglobulins, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic Press, New York, pp. 257–330.

    Google Scholar 

  • McKenzie, H.A. (1971d). β-lactoglobulin, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2., Academic Press, New York, pp. 257–330.

    Google Scholar 

  • McKenzie, A.H. and White, F.H. (1991). Lysozyme and α-lactalbumin: structure, function, and interrelationships. Adv. Prot. Chem. 41, 173–315.

    Google Scholar 

  • McMahon, D.J. and Brown, R.J. (1984). Composition, structure, and integrity of casein micelles: a review. J. Dairy Sci. 67, 499–512.

    Google Scholar 

  • McMahon, D.J. and McManus, W.R. (1998). Rethinking casein micelle structure using electron microscopy. J. Dairy Sci. 81, 2985–2993.

    Google Scholar 

  • McMahon, D.J. and Oommen, B.S. (2008). Supramolecular structure of the casein micelle. J. Dairy Sci. 91, 1709–1721.

    Google Scholar 

  • McMeekin, T.L. (1970). Milk proteins in retrospect, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 1, H.A. McKenzie ed., Academic Press, New York, pp. 3–15.

    Google Scholar 

  • McMeekin, T.L. and Polis, B.D. (1949). Milk proteins. Adv. Prot. Chem. 5, 201–228.

    Google Scholar 

  • McSweeney, P.L.H., Olson, N.F., Fox, P.F., Healy, A. and Højrup, P. (1993). Proteolytic specificity of plasmin on bovine αs1-casein. Food Biotechnol. 7, 143–158.

    Google Scholar 

  • Mellander, O. (1939). Elektrophophoretische Unterschung von Casein. Biochemische Z. 300, 240–245.

    Google Scholar 

  • Mills, S., Ross, R.P., Hill, C., Fitzgerald, G.F. and Stanton, C. (2011). Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 21, 377–401.

    Google Scholar 

  • Moon, T.W., Peng, I.C. and Lonergan, D.A. (1988). Chemical properties of cryocasein. J. Food Sci. 53, 1687–1693.

    Google Scholar 

  • Moon, T.W., Peng, I.C. and Lonergan, D.A. (1989). Functional properties of cryocasein. J. Dairy Sci. 72, 815–828.

    Google Scholar 

  • Morr, C.V. (1967). Effect of oxalate and urea upon ultracentrifugation properties of raw and heated skim milk casein micelles. J. Dairy Sci. 50, 1744–1751.

    Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1976). The influence of naturally occurring levels of urea on the heat stability of bulk milk. J. Dairy Res. 43, 495–499.

    Google Scholar 

  • Mulvihill, D.M. and Ennis, M.P. (2003). Functional milk proteins: production and utilisation, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 1175–1228.

    Google Scholar 

  • Mulvihill, D.M. and Fox, P.F. (1989). Physico-chemical and functional properties of milk proteins, in, Developments in Dairy Chemistry, vol. 4 Functional Milk Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 131–172.

    Google Scholar 

  • Murphy, J.M. and Fox, P.F. (1991). Fractionation of sodium caseinate by ultrafiltration. Food Chem. 39, 27–38.

    Google Scholar 

  • Needs, E.C., Stenning, R.A., Gill, A.L., Ferragut, V. and Rich, G.T. (2000). High-pressure treatment of milk: Effects on casein micelle structure and on enzymic coagulation. J. Dairy Res. 67, 31–42.

    Google Scholar 

  • Neelin, J.M. (1964). Variants of κ-casein revealed by improved starch gel electrophoresis. J. Dairy Sci. 47, 506–509.

    Google Scholar 

  • Ng, W.C., Brunner, J.R. and Rhee, K.C. (1970). Proteose-peptone fraction of bovine milk: lacteum serum component 3—a whey glycoprotein. J. Dairy Sci. 53, 987–996.

    Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (2003). Heat-induced coagulation of milk, in, Advanced Dairy Chemistry —Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 879–945.

    Google Scholar 

  • O’Connor, P. and Fox, P.F. (1970). Temperature-dependent dissociation of casein micelles from milk of various species. Neth. Milk Dairy J. 27, 199–217.

    Google Scholar 

  • O’Donnell, R., Holland, J.W., Deeth, H.C. and Alewood, P. (2004). Milk proteomics. Int. Dairy J. 14, 1013–1023.

    Google Scholar 

  • O’Flaherty, F. (1997). Characterization of Some Minor Caseins and Proteose Peptones of Bovine Milk. Master’s Thesis, National University of Ireland, Cork.

    Google Scholar 

  • O’Mahony, J.A., Lucey, J.A. and Smith, K.E. (2007). Purification of β-casein from milk. United States Patent Application US 2007/0104847A1.

    Google Scholar 

  • O’Sullivan, M.M. and Mulvihill, D.M. (2001). Influence of some physico-chemical characteristics of commercial rennet caseins on the performance of the casein in Mozzarella cheese analogue manufacture. Int. Dairy J. 11, 153–163.

    Google Scholar 

  • Ochirkuyag, B., Chobert, J.-M., Dalgalarrondo, M. and Haertle, T. (2000). Characterization of mare casein: identification of αs1- and αs2-caseins. Lait 80, 223–235.

    Google Scholar 

  • Oftedal, O.T. and Jenness, R. (1988). Interspecies variation in milk composition among horses, zebras and asses (Perissodactyla: Equidae). J. Dairy Res. 55, 57–66.

    Google Scholar 

  • Oldfield, D.J., Taylor, M.W. and Singh, H. (2005). Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture. Int. Dairy J. 15, 501–511.

    Google Scholar 

  • Ono, T. and Creamer, L.K. (1986). Structure of goat casein micelles. N.Z. J. Dairy Sci. Technol. 21, 57–64.

    Google Scholar 

  • Ono, T. and Obata, T. (1989). A model for the assembly of bovine casein micelles from F2 and F3 subunits. J. Dairy Res. 56, 453–461.

    Google Scholar 

  • Palmer, A.H. (1934). The preparation of a crystalline globulin from the albumin fraction of cow’s milk. J. Biol. Chem. 104, 359–372.

    Google Scholar 

  • Park, Y.W., Juarez, M., Ramos, M. and Haenlein, G.F.W. (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res. 68, 88–113.

    Google Scholar 

  • Parquet, D. (1989). Revue bibliographique: la fraction proteose-peptones du lait. Lait 69, 1–21.

    Google Scholar 

  • Parry, R.M., Jr. and Carroll, R.J. (1969). Location of κ-casein on milk micelles. Biochim. Biophys. Acta 194, 138–150.

    Google Scholar 

  • Patel, R.S. and Mistry, V.V. (1997). Physicochemical and structural properties of ultrafiltered buffalo milk and milk powder. J. Dairy Sci. 80, 812–817.

    Google Scholar 

  • Payens, T.A.J. (1966). Association of caseins and their possible relation to structure of the casein micelle. J. Dairy Sci. 49, 1317–1324.

    Google Scholar 

  • Payens, T.A.J. (1979). Casein micelles: the colloid-chemical approach. J. Dairy Res. 46, 291–306.

    Google Scholar 

  • Payens, T.A.J. (1982). Stable and unstable casein micelles. J. Dairy Sci. 65, 1863–1873.

    Google Scholar 

  • Peaker, M. (2002). The mammary gland in mammalian evolution: A brief commentary on some of the concepts. J. Mammary Gland Biol. Neoplasia 7, 347–353.

    Google Scholar 

  • Pearce, J. (1983). Thermal separation of β-lactoglobulin and α-lactalbumin in bovine Cheddar cheese whey. Aust. J. Dairy Technol. 38, 144–149.

    Google Scholar 

  • Pedersen, K.O. (1936). Ultracentrifugal and electrophoretic studies on the milk proteins. I. Introduction and preliminary results with fractions from skim milk. Biochem. J. 30, 948–960.

    Google Scholar 

  • Pepper, L. (1972). Casein interactions as studied by gel chromatography and ultracentrifugation. Biochim. Biophys. Acta 278, 147–154.

    Google Scholar 

  • Pepper, L. and Farrell, H.M., Jr. (1982). Interactions leading to formation of casein submicelles. J. Dairy Sci. 65, 2259–2266.

    Google Scholar 

  • Peters, T. (1985). Serum albumin. Adv. Prot. Chem. 37, 161–245.

    Google Scholar 

  • Peterson, R.F. (1963). High resolution of milk proteins obtained by gel electrophoresis. J. Dairy Sci. 46, 1136–1139.

    Google Scholar 

  • Pettersson, J., Mossberg, A.K. and Svanborg, C. (2006). α-Lactalbumin species variation, HAMLET formation and tumor cell death. Biochem. Biophys. Res. Commun. 345, 260–270.

    Google Scholar 

  • Phelan, M., Aherne, A., FitzGerald, R.J. and O’Brien, N.M. (2009). Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643–654.

    Google Scholar 

  • Pierre, A., Fauquant, J., Le Graet, Y., Piot, M. and Maubois, J.-L. (1992). Préparation de phosphocaséinate natif par microfiltration sur membrane. Lait 72, 461–474.

    Google Scholar 

  • Polis, G.A., Shmukler, H.W., Custer, J.H. and McMeekin, T.L. (1950). Isolation of an electrophoretically homogeneous crystalline component of β-lactoglobulin. J. Am. Chem. Soc. 72, 4965–4968.

    Google Scholar 

  • Poulik, M.D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature 180, 1477–1479.

    Google Scholar 

  • Pyne, G.T. (1955). The chemistry of casein. Dairy Sci. Abstr. 17, 531–554.

    Google Scholar 

  • Pyne, G.T. and McGann, T.C.A. (1960). The colloidal phosphate of milk. J. Dairy Res. 27, 9–17.

    Google Scholar 

  • Rao, M.B., Gupta, R.C. and Dastur, N. (1970). Camels’ milk and milk products. Indian J. Dairy Sci. 23, 71–78.

    Google Scholar 

  • Raynal-Ljutovac, K., Park, Y.W., Gaucheron, F. and Bouhallab, S. (2007). Heat stability and enzymatic modifications of goat and sheep milk. Small Ruminant Res. 68, 207–220.

    Google Scholar 

  • Rijnkels, M. (2002). Multispecies comparison of the casein gene loci and evolution of casein gene family. J. Mammary Gland Biol. 7, 327–345.

    Google Scholar 

  • Rival-Gervier, S., Thepot, D., Jolivet, G. and Houdebine, L.-M. (2003). Pig whey acidic protein gene is ­surrounded by two ubiquitously expressed genes. Biochim. Biophys. Acta 1627, 7–14.

    Google Scholar 

  • Rizvi, S.S.H. and Brandsma, R.L. (2002). Microfiltration of skim milk for cheese making and whey proteins. US Patent 6,485,762 B1.

    Google Scholar 

  • Roach, A. and Harte, F. (2008). Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenisation. Innovative Food Sci. Emerging Technol. 9, 1–8.

    Google Scholar 

  • Rollema, H.S. (1992). Casein association and micelle formation, in, Advanced Dairy Chemistry, vol. 1, Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 111–140.

    Google Scholar 

  • Rose, D. (1968). Relation between micellar and serum casein in bovine milk. J. Dairy Sci. 51, 1897–1902.

    Google Scholar 

  • Rose, D. (1969). A proposed model of micelle structure in bovine milk. Dairy Sci. Abstr. 31, 171–175.

    Google Scholar 

  • Rose, D., Brunner, R.J., Kalan, E.B., Larson, B.L., Melnychyn, P., Swaisgood, H.E. and Waugh, D.F. (1970). Nomenclature of the proteins of cow’s milk: third revision. J. Dairy Sci. 53, 1–17.

    Google Scholar 

  • Roufik, S., Paquin, P. and Britten, M. (2005). Use of high-performance size exclusion chromatography to characterise protein aggregation in commercial whey protein concentrates. Int. Dairy J. 15, 231–241.

    Google Scholar 

  • Rowland, S.J. (1938). The determination of the nitrogen distribution in milk. J. Dairy Res. 9, 42–46.

    Google Scholar 

  • Rudloff, S. and Kunz, C. (1997). Protein and non-protein nitrogen components in human milk, bovine milk and infant formula: Quantitative and qualitative aspects in infant nutrition. J. Pediatric Gastroenterol. Nutr. 24, 328–344.

    Google Scholar 

  • Ruettimann, K.W. and Ladisch, M.R. (1987). Casein micelles: structure, properties and enzymatic coagulation. Enz. Microbiol. Technol. 9, 578–589.

    Google Scholar 

  • Salimei, E., Fantuz, F., Coppola, R., Chiolfalo, B., Polidori, P. and Varisco, G. (2004). Composition and characteristics of ass’ milk. Animal Res. 53, 67–78.

    Google Scholar 

  • Sandra, S. and Dalgleish, D.G. (2005). Effects of ultra-high-pressure homogenisation and heating on structural properties of casein micelles in reconstituted skim milk powder. Int. Dairy J. 15, 1095–1104.

    Google Scholar 

  • Sawyer, L. (2003). β-Lactoglobulin, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 319–386.

    Google Scholar 

  • Schmidt, D.G. (1980). Colloidal aspects of casein. Neth. Milk Dairy J. 34, 42–64.

    Google Scholar 

  • Schmidt, D.G. (1982). Association of caseins and casein micelle structure, in, Developments in Dairy Chemistry, vol. 1, Proteins, P.F. Fox, ed., Applied Science Publishers, London, pp. 63–110.

    Google Scholar 

  • Scollard, P.G., Beresford, T.P., Needs, E.C., Murphy, P.M. and Kelly, A.L. (2000). Plasmin activity, β-lactoglobulin denaturation and proteolysis in high pressure treated milk. Int. Dairy J. 10, 835–310.

    Google Scholar 

  • Shalabi, S.I. and Fox, P.F. (1987). Electrophoretic analysis of cheese: comparison of methods. Irish J. Food Sci. Technol. 11, 135–151.

    Google Scholar 

  • Shida, K., Takamizawa, K., Nagaoka, M., Kusiko, T., Osawa, T. and Tsiji, T. (1994). Enterotoxin-binding glycoproteins in a proteose-peptone fraction of heated bovine milk. J. Dairy Sci. 77, 930–939.

    Google Scholar 

  • Silanikove, N., Leitner, G., Merin, U. and Prosser, C.G. (2010). Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Ruminant Res. 89, 110–124.

    Google Scholar 

  • Simpson, K.J. and Nicholas, K.R. (2002). Comparative biology of whey proteins. J. Mammary Gland Biol. Neoplasia. 7, 313–326.

    Google Scholar 

  • Simpson, K.J., Bird, P., Shaw, D. and Nicholas, K. (1998). Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein gene. J. Mol. Endocrinol. 20, 27–34.

    Google Scholar 

  • Simpson, K.J., Ranganathan, S., Fisher, J.A., Janssens, P.A., Shaw, D.C. and Nicholas, K.R. (2000). The gene for a novel member of the whey acidic protein family encodes three four-disulphide core domains and is asynchronously expressed during lactation. J. Biol. Chem. 275, 23074–23081.

    Google Scholar 

  • Slatter, W.L. and van Winkle, Q. (1952). An electrophoretic study of the protein in skim milk. J. Dairy Sci. 35, 1083–1093.

    Google Scholar 

  • Slattery, C.W. (1976). Review: casein micelle structure; an examination of models. J. Dairy Sci. 59, 1547–1556.

    Google Scholar 

  • Slattery, C.W. and Evard, R. (1973). A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta 317, 529–538.

    Google Scholar 

  • Smithies, O. (1955). Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem. J. 61, 629–641.

    Google Scholar 

  • Solaroli, G., Pagliarini, E. and Peri, C. (1993). Composition and nutritional quality of mare’s milk. Ital. J. Food Sci. V, 3–10.

    Google Scholar 

  • Sorensen, E.S. and Petersen, T.E. (1993). Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res. 60, 189–1297.

    Google Scholar 

  • Sorensen, E.S. and Petersen, T.E. (1994). Identification of two phosphorylation motifs in bovine osteopontin. Biochem. Biophys. Res. Commun. 198, 200–205.

    Google Scholar 

  • Sorensen, M. and Sorensen, S.P.L. (1939). The proteins of whey. Compt. Rend. Trav. Lab. Carlsberg. Ser. Chim. 23, 35–99.

    Google Scholar 

  • Sorensen, E.S., Ostersen, S., Chatterton, D., Holst, H.H. and Albertsen, K. (2001). Process for isolation of osteopontin from milk. US Patent US 07259243.

    Google Scholar 

  • Stack, F.M., Hennessy, M., Mulvihill, D. and O’Kennedy, B.T. (1998). Process for the fractionation of whey constituents. United States Patent US5747647.

    Google Scholar 

  • Strange, E.D., Malin, E.L., van Hekken, D.L. and Basch, J.J. (1992). Chromatographic and electrophoretic methods used for analysis of milk proteins. J. Chromatogr. 624, 81–102.

    Google Scholar 

  • Sun, J., Yin, G. and Liu, N. (2010). Purification and identification of osteopontin from bovine milk. Milchwissenschaft 65, 131–134.

    Google Scholar 

  • Svensson, M., Hakansson, A., Mossberg, A.K., Linse, S. and Svanborg, C. (2000). Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc. National Acad. Sci. USA. 97, 4221–4226.

    Google Scholar 

  • Swaisgood, H.E. (1973). The caseins. CRC Crit. Rev. Food Technol. 3, 375–414.

    Google Scholar 

  • Swaisgood, H.E. (1975). Methods of Gel Electrophoresis of Milk Proteins. American Dairy Science Association, Champaign, IL, pp. 1–33.

    Google Scholar 

  • Swaisgood, H.E. (1982). Chemistry of milk proteins, in, Developments in Dairy Chemistry, vol. 1, Proteins, P.F. Fox, ed., Applied Science Publishers, London, pp. 1–59.

    Google Scholar 

  • Swaisgood, H.E. (2003). Chemistry of the caseins, in, Advanced Dairy Chemistry, 3rd edn., Vol. 1, P. F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 139–201.

    Google Scholar 

  • Swaisgood, H.E. and Brunner, J.R. (1962). Characterization of κ-casein obtained by fractionation with trichloro­acetic acid in a concentrated urea solution. J. Dairy Sci. 45, 1–11.

    Google Scholar 

  • Thomas, T.D. and Pritchard, G.G. (1987). Proteolytic enzymes of dairy starter cultures. FEMS Microbiol. Lett. 46, 245–268.

    Google Scholar 

  • Thompson, M.P., Tarassuk, N.P., Jenness, R., Lillevik, H.A., Ashworth, U.S. and Rose, D. (1965). Nomenclature of the proteins of cow’s milk—second revision. J. Dairy Sci. 48, 159–169.

    Google Scholar 

  • Timasheff, S.N. and Townend, R. (1962). Structural and genetic implications of the physical and chemical differences between β-lactoglobulin A and B. J. Dairy Sci. 45, 259–266.

    Google Scholar 

  • Tobias, J., Whitney, R.McL. and Tracy, P.H. (1952). Electrophoretic properties of milk proteins. II. Effect of heating at 300ºF by means of the Mallory small tube heat exchanger. J. Dairy Sci. 35, 1036–1045.

    Google Scholar 

  • Tomee, J.F., Hiemstra, P.S., Heinzel-Wieland, R. and Kauffman, H.F. (1997). Antileukoprotease: an endogenous protein in the innate mucosal defense against fungi. J. Infect. Dis. 176, 740–747.

    Google Scholar 

  • Uniacke, T. and Fox, P.F. (2011). Milk of primates, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA, pp. 613–631.

    Google Scholar 

  • Uniacke-Lowe, T. and Fox, P.F. (2011). Equid milk. Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA. pp. 518–529.

    Google Scholar 

  • Uniacke-Lowe, T., Huppertz, T. and Fox, P.F. (2010). Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 20, 609–629.

    Google Scholar 

  • Urashima, T., Kitaoka, M., Asakuma, S. and Messer, M. (2009). Milk oligosaccharides, in, Advanced Dairy Chemistry, Vol. 3: Lactose, Water, Salts and Minor Constituents, P.L.H. McSweeney and P.F. Fox, eds., Springer, New York, pp. 295–349.

    Google Scholar 

  • Van Hekken, D.L. and Thompson, M.P. (1992). Application of PhastSystem to the resolution of bovine milk proteins on urea-polyacrylamide gel electrophoresis. J. Dairy Sci. 75, 1204–1210.

    Google Scholar 

  • Vanderghem, D., Danthine, S., Blecker, C. and Deroanne, C. (2007). Effect of proteose-peptone addition on some physico-chemical characteristics of recombined dairy creams. Int. Dairy J. 17, 889–895.

    Google Scholar 

  • Verstegen, M.W.A., Moughan, J. and Schrama, J.W. (1998). The Lactating Sow. Wageningen Press, Wageningen, The Netherlands.

    Google Scholar 

  • Visser, H. (1992). A new casein micelle model and its consequences for pH and temperature effects on the properties of milk, in, Protein Interactions, H. Visser, ed., VCH, Weinheim, Germany, pp. 135–165.

    Google Scholar 

  • Visser, S., Noorman, H.J., Slangen, C.J. and Rollema, H.S. (1989a). Action of plasmin on bovine β-casein in a membrane reactor. J. Dairy Res. 56, 323–333.

    Google Scholar 

  • Visser, S., Slangen, C.J., Alting, A.C. and Vreeman, H.J. (1989b). Specificity of bovine plasmin in its action on αs2-casein. Milchwissenschaft 44, 335–339.

    Google Scholar 

  • Wake, R.G. and Baldwin, R.L. (1961). Analysis of casein fractions by zone electrophoresis in concentrated urea. Biochim. Biophys. Acta 47, 225–239.

    Google Scholar 

  • Walstra, P. (1990). On the stability of casein micelles. J. Dairy Sci. 73, 1965–1979.

    Google Scholar 

  • Walstra, P. (1999). Casein sub-micelles: do they exist? Int. Dairy J. 9, 189–192.

    Google Scholar 

  • Walstra, P. and Jenness, R. (1984). Dairy Chemistry and Physics. John Wiley & Sons, New York.

    Google Scholar 

  • Walstra, P., Geurts, T.J., Noomen, A., Jellema, A. and van Boekel, M.A.J.S. (1999). Dairy Technology: Principles of Milk Properties and Processes. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Walstra, P., Wouters, J.T.M. and Geurts, T.J. (2005). Dairy Science and Technology. CRC/Taylor and Francis, Oxford, UK.

    Google Scholar 

  • Wang, T. and Lucey, J.A. (2003). Use of multi-angle laser light scattering and size-exclusion chromatography to characterise the molecular weight and types of aggregates present in commercial whey protein products. J. Dairy Sci. 86, 3090–3101.

    Google Scholar 

  • Warner, R.C. (1944). Separation of α- and β-casein. J. Am. Chem. Soc. 66, 1725–1731.

    Google Scholar 

  • Waugh, D.F. (1958). The interactions of αs-, β-, and κ-caseins in micelle formation. Far. Soc. Disc. 25, 186–192.

    Google Scholar 

  • Waugh, D.F. (1971). Formation and structure of casein micelles, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic Press, New York, pp. 3–85.

    Google Scholar 

  • Waugh, D.F. and von Hipple, P.H. (1956). κ-Casein and the stabilization of casein micelles. J. Am. Chem. Soc. 78, 4576–4582.

    Google Scholar 

  • Waugh, D.F., Creamer, L.K., Slattery, C.W. and Dresdner, G.W. (1970). Core polymers of casein micelles. Biochemistry 9, 786–795.

    Google Scholar 

  • Webb, B.H. and Johnson, A.H. (1965). Fundamentals of Dairy Chemistry. AVI Publishing Co., Inc., Westport, CT.

    Google Scholar 

  • Webb, B.H., Johnson, A.H. and Alford, J.A. (1974). Fundamentals of Dairy Chemistry, 2nd edn. AVI Publishing Co., Westport, CT.

    Google Scholar 

  • White, J.C.D. and Davies, D.T. (1966). The stability of milk protein to heat: III. Objective measurement of heat stability of milk. J. Dairy Res. 33, 93–102.

    Google Scholar 

  • Whitney, R.McL., Brunner, J.R., Ebner, K.E., Farrell, H.M., Jr., Josephson, R.V., Morr, C.V. and Swaisgood, H.E. (1976). Nomenclature of the proteins of cow’s milk—fourth revision. J. Dairy Sci. 59, 795–815.

    Google Scholar 

  • Wong, N.P., Jenness, R., Keeney, M. and Marth, E.H. (1988). Fundamentals of Dairy Chemistry, 3rd edn. AVI Publishing Co., Westport, CT.

    Google Scholar 

  • Wong, D.W.S., Camirand, W.M. and Pavlath, A.E. (1996). Structure and functionalities of milk proteins. CRC Crit. Rev. Food Sci. Nutr. 36, 807–844.

    Google Scholar 

  • Woodward, D.R. (1976). The chemistry of mammalian caseins. Dairy Sci. Abstr. 38, 137–150.

    Google Scholar 

  • Yamada, M., Murakami, K., Wallingford, J.C. and Yuki, Y. (2002). Identification of low-abundance proteins of bovine colostral and mature milk using two-dimensional electrophoresis followed by microsequencing and mass spectrometry. Electrophoresis 23, 1153–1160.

    Google Scholar 

  • Yenugu, S., Richardson, R.T., Sivashanmugam, P., Wang, Z., O’Rand, M.G., French, F.S. and Hall, S.H. (2004). Antimicrobial activity of human EPPIN, an androgen-regulated, sperm-bound protein with a whey acidic protein motif. Biol. Reprod. 71, 1484–1490.

    Google Scholar 

  • Zappacosta, F., Diluccia, A., Ledda, L. and Addeo, F. (1998). Identification of C-terminally truncated forms of b-lactoglobulin in whey from Romagnola cows’ milk by two dimensional electrophoresis coupled to mass spectrometry. J. Dairy Res. 65, 243–252.

    Google Scholar 

  • Zittle, C.A. and Custer, J.H. (1963). Fractionation and some properties of αs-casein and κ-casein. J. Dairy Sci. 46, 1183–1188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. O’Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Mahony, J.A., Fox, P.F. (2013). Milk Proteins: Introduction and Historical Aspects. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_2

Download citation

Publish with us

Policies and ethics