Skip to main content

Genetics and Biosynthesis of Milk Proteins

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

The mammary gland acts as a bio-factory to produce in large amount few proteins by transcribing temporally and spatially regulated genes and translating their mRNA. The aim of this chapter is to summarize briefly our knowledge on the structure of the milk protein genes and to put into context the rapid growth of information on the regulatory elements involved in controlling the expression of these genes. It also describes the amino acid supply to the mammary gland and the intracellular transport and sorting of milk proteins in the secretory pathway of mammary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi, T., Ahn, J.Y., Yamamoto, K., Aoki, N., Nakamura, R. and Matsuda, T. (1996). Characterization of the bovine kappa-casein gene promoter. Biosci. Biotech. Biochem. 60, 1937–1940.

    Article  CAS  Google Scholar 

  • Aggeler, J., Park, C.S. and Bissell, M.J. (1988). Regulation of milk protein and basement membrane gene expression: the influence of the extracellular matrix. J. Dairy Sci. 71, 2830–2842.

    Article  CAS  Google Scholar 

  • Alcorn, J., Moscow, J.A. and McNamara, P.J. (2002). Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J. Pharmacol. Ther. 303, 487–496.

    Article  CAS  Google Scholar 

  • Aleman, G., Lopez, A., Ordaz, G., Torres, N. and Tovar, A.R. (2009). Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregnancy, lactation and weaning. Metabolism 58, 594–601.

    Article  CAS  Google Scholar 

  • Alexander, L.J., Hayes, G., Bawden, W., Stewart, A.F. and MacKinlay, A.G. (1993). Complete nucleotide sequence of the bovine beta-lactoglobulin gene. Anim. Biotechol. 4, 1–10.

    Article  CAS  Google Scholar 

  • Alexander, L.J., Stewart, A.F., MacKinlay, A.G., Kapelinskaya, T.V., Tkach, T.M. and Gorodetsky, S.I. (1988). Isolation and characterization of the bovine kappa-casein gene. Eur. J. Biochem. 178, 395–401

    Article  CAS  Google Scholar 

  • Ali, S. and Clark, J. (1988). Characterization of the gene encoding ovine beta-lactoglobulin. Similarity to the genes for retinol binding protein and other secretory proteins. J. Mol. Biol. 199, 415–426

    Article  CAS  Google Scholar 

  • Altiok, S. and Groner, B. (1993). Interaction of two sequence-specific single-stranded DNA-binding proteins with an essential region of the beta-casein promoter is regulated by lactogenic hormones. Mol. Cell. Biol. 13, 7303–7310.

    CAS  Google Scholar 

  • Altiok, S. and Groner, B. (1994). Beta-casein mRNA sequesters a single stranded nucleic acid-binding protein which negatively regulates the beta-casein gene promoter. Mol. Cell. Biol. 14, 6004–6012.

    Article  CAS  Google Scholar 

  • Attal, J., Cajero-Juarez, M., Petitclerc, D., Theron, M.C., Stinnakre, M.G., Bearzotti, M., Kann, G. and Houdebine, L.M. (1995). The effect of matrix attached regions (MAR) and specialized chromatin structure (SCS) on the expression of gene constructs in cultured cells and transgenic mice. Mol. Biol. Rep. 22, 37–46.

    Article  CAS  Google Scholar 

  • Avril-Sassen, S., Goldstein, L.D., Stingl, J., Blenkiron, C., Le Quesne, J., Spiteri, I., Karagavriilidou, K., Watson, C.J., Tavaré, S., Miska, E.A. and Caldas, C. (2009). Characterisation of miRNA expression in post-natal mouse mammary gland development. BMC Genomics 10, 548

    Article  CAS  Google Scholar 

  • Backwell, F.R.C., Bequette, B.J., Wilson, D., Calder, A.G., Metcalf, J.A., Wray Cahen, D., MacRae, J.C., Beever, D.E. and Lobley, G.E. (1994). Utilization of dipeptides by the caprine mammary-gland for protein-synthesis. Am. J. Physiol. 267, R1–R6.

    CAS  Google Scholar 

  • Backwell, F.R.C., Bequette, B.J., Wilson, D., Metcalf, J.A., Franklin, M.F., Beever, D.E., Lobley, G.E. and MacRae, J.C. (1996). Evidence for the utilization of peptides for milk protein synthesis in the lactating dairy goat in vivo. Am. J. Physiol. 271, R955–R960.

    CAS  Google Scholar 

  • Baranyi, M., Aszodi, A., Devinoy, E., Fontaine, M.L., Houdebine, L.M. and Bosze, Z. (1996). Structure of the rabbit kappa-casein encoding gene: expression of the cloned gene in the mammary gland of transgenic mice. Gene 174, 27–34.

    Article  CAS  Google Scholar 

  • Baranyi, M., Brignon, G., Anglade, P. and Ribadeau-Dumas, B. (1995). New data on the proteins of rabbit (Oryctolagus cuniculus) milk. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 111, 407–415.

    Article  CAS  Google Scholar 

  • Barash, I. (2006). Stat5 in the mammary gland: controlling normal development and cancer. J. Cell Physiol. 209, 305–313

    Article  CAS  Google Scholar 

  • Bargmann, W. and Knoop, A. (1959). Morphology of lactation; light and electro-microscopic studies on the mammary glands of rats. Z. Zellforsch. Mikrosk. Anat. 49, 344–388.

    Article  CAS  Google Scholar 

  • Barker, G.A. and Ellory, J.C. (1990). The identification of neutral amino acid transport systems. Exp. Physiol. 75, 3–26.

    CAS  Google Scholar 

  • Baumrucker, C.R. (1984). Cationic amino acid transport by bovine mammary tissue. J. Dairy Sci. 67, 2500–2506.

    Article  CAS  Google Scholar 

  • Baumrucker CR. (1985). Amino acid transport systems in bovine mammary tissue. J. Dairy Sci. 68(9), 2436–2451.

    Article  CAS  Google Scholar 

  • Bingham, E.W. and Farrell, H.M. Jr (1974). Casein kinase from the Golgi apparatus of lactating mammary gland. J. Biol. Chem. 249, 3647–3651.

    CAS  Google Scholar 

  • Blobel, G. and Dobberstein, B. (1975). Transfer of proteins across membranes 1. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835–851.

    Article  CAS  Google Scholar 

  • Blum, J.L., Zeigler, M.E. and Wicha, M.S. (1989). Regulation of mammary differentiation by the extracellular matrix. Environ. Health Perspect. 80, 71–83.

    Article  CAS  Google Scholar 

  • Boisgard, R. and Chanat, E. (2000). Phospholipase D-dependent and -independent mechanisms are involved in milk protein secretion in rabbit mammary epithelial cells. Biochim Biophys Acta 1495, 281–296.

    Article  CAS  Google Scholar 

  • Boisgard, R., Charpigny, G. and Chanat, E. (1999). Polymeric IgA are sulfated proteins. FEBS Lett 463, 250–254.

    Article  CAS  Google Scholar 

  • Boisnard, M., Hue, D., Bouniol, C., Mercier, J.C. and Gaye, P. (1991). Multiple mRNA species code for two non-allelic forms of ovine alpha-s2-casein. Eur. J. Biochem. 201, 633–641

    Article  CAS  Google Scholar 

  • Bonsing, J., Ring, J.M., Stewart, A.F. and MacKinlay, A.G. (1988). Complete nucleotide sequence of the bovine beta-casein gene. Aust. J. Biol. Sci. 41, 527–537.

    CAS  Google Scholar 

  • Boström, P., Andersson, L., Rutberg, M., Perman, J., Lidberg, U., Johansson, B.R., Fernandez-Rodriguez, J., Ericson, J., Nilsson, T., Borén, J. and Olofsson, S.-O. (2007). SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat. Cell Biol. 9, 1286–1293.

    Article  CAS  Google Scholar 

  • Boucheron, C., Dumon, S., Santos, S.C., Moriggl, R., Hennighausen, L., Gisselbrecht, S. and Gouilleux, F. (1998). A single amino acid in the DNA binding regions of Stat5A and Stat5B confers distinct binding specificities. J. Biol. Chem. 273, 33936–33941.

    Article  CAS  Google Scholar 

  • Bouguyon, E., Beauvallet, C., Huet, J.C. and Chanat, E. (2006). Disulphide bonds in casein micelle from milk. Biochem. Biophys. Res. Commun. 343, 450–458.

    Article  CAS  Google Scholar 

  • Brew, K., Castellino, F.J., Vanaman, T.C., Hill, R.L. (1970). The complete amino acid sequence of bovine alpha-lactalbumin. J. Biol. Chem. 245, 4570–4582.

    CAS  Google Scholar 

  • Bryson, J.M., Jackson, S.C., Wang, H. and Hurley, W.L. (2001). Cellular uptake of taurine by lactating porcine mammary gland. Comp. Biochem. Physiol. B . 128, 667–673.

    Article  CAS  Google Scholar 

  • Burdon, T.G., Maitland, K.A., Clark, A.J., Wallace, R. and Watson, C.J. (1994). Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon gamma activation site-related element. Mol. Endocrinol. 8, 1528–1536.

    Article  CAS  Google Scholar 

  • Buser, A.C., Gass-Handel, E.K.., Wyszomierski, S.L., Doppler, W., Leonhardt, S.A., Schaack, J., Rosen, J.M., Watkin, H., Anderson, S.M. and Edwards, D.P. (2007). Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the beta-casein gene in mammary epithelial cells. Mol Endocrinol.1, 106–25.

    Google Scholar 

  • Calvert, D.T. and Shennan, D.B. (1996). Evidence for an interaction between cationic and neutral amino acids at the blood-facing aspect of the lactating rat mammary epithelium. J. Dairy Res. 63, 25–33.

    Article  CAS  Google Scholar 

  • Calvert, D.T. and Shennan, D.B. (1998). Volume-activated taurine efflux from the in situ perfused lactating rat mammary gland. Acta Physiol. Scand. 162, 97–105.

    Article  CAS  Google Scholar 

  • Campbell, S.M., Rosen, J.M., Hennighausen, L.G., Strech-Jurk, U. and Sippel, A.E. (1984). Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12, 8685–8697

    Article  CAS  Google Scholar 

  • Chanat, E. (2006). Sulphated proteins secreted by rat mammary epithelial cells. Reprod Nutr Dev 46, 557–566.

    Article  CAS  Google Scholar 

  • Chanat, E. and Huttner, W.B. (1991). Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J. Cell. Biol. 115, 1505–1519.

    Article  CAS  Google Scholar 

  • Chanat, E., Martin, P. and Ollivier-Bousquet, M. (1999). αs1-Casein is required for the efficient transport of b- and k-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci. 112 (Pt 19), 3399–3412.

    CAS  Google Scholar 

  • Chat, S., Layani, S., Mahaut, C., Henry, C., Chanat, E. and Truchet, S. (2011). Characterisation of the potential SNARE proteins relevant to milk product release by mouse mammary epithelial cells. Eur. J. Cell. Biol. 90 , 401–413.

    Article  CAS  Google Scholar 

  • Clermont, Y., Xia, L., Rambourg, A., Turner, J.D. and Hermo, L. (1993). Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of the rat. Anat. Rec. 235, 363–373.

    Article  CAS  Google Scholar 

  • Collet, C. and Joseph, R. (1995). Exon organization and sequence of the genes encoding alpha-lactalbumin and beta-lactoglobulin from the Tammar Wallaby (Macropodidae, Marsupialia). Biochem. Genet. 33, 61–72.

    Article  CAS  Google Scholar 

  • Collet, C., Joseph, R. and Nicholas, K. (1990). Cloning, cDNA analysis and prolactin-dependent expression of a marsupial alpha-lactalbumin. Reprod. Fertil. Dev. 2, 693–701.

    Article  CAS  Google Scholar 

  • Connor, E.E., Siferd, S., Elsasser, T.H., Evock-Clover, C.M., Van Tassel, C.P., Sonstegard, T.S., Fernandes, V.M. and Capuco, A.V. (2008). Effects of increased milking frequency on gene expression in the bovine mammary gland. BMC Genomics 9, 362

    Article  CAS  Google Scholar 

  • Copeland, C.S., Doms, R.W., Bolzau, E.M., Webster, R.G. and Helenius, A. (1986). Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell. Biol. 103, 1179–1191.

    Article  CAS  Google Scholar 

  • Dale, T.C., Krnacik, M.J., Schmidhauser, C., Yang, C.L.Q., Bissell, M.J. and Rosen, J.M. (1992). High-level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3′ untranslated region. Mol. Cell. Biol. 12, 905–914.

    CAS  Google Scholar 

  • Davies, M.S., West, L.F., Davis, M.B., Povey, S. and Craig, R.K. (1987). The gene for human alpha-lactalbumin is assigned to chromosome 12q13. Ann. Hum. Genet. 51, 183–188

    Article  CAS  Google Scholar 

  • Dawson, S.P., Wilde, C.J., Tighe, P.J. and Mayer, R.J. (1993). Characterization of two novel casein transcripts in rabbit mammary gland. Biochem. J. 15, 777–784.

    Google Scholar 

  • Demmer, J., Burdon, T.G., Djiane, J., Watson, C.J. and Clark, A.J. (1995). The proximal milk protein binding factor binding site is required for the prolactin responsiveness of the sheep beta-lactoglobulin promoter in Chinese hamster ovary cells. Mol. Cell. Endocrinol. 107, 113–121.

    Article  CAS  Google Scholar 

  • Derbinski, J., Pinto, S., Rösch, S., Hexel, K. and Kyewski, B. (2008). Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc. Natl. Acad. Sci. U.S.A. 105, 657–662

    Article  CAS  Google Scholar 

  • Devinoy, E., Hubert, C., Schaerer, E., Houdebine, L.M. and Kraehenbuhl, J.P. (1988). Sequence of the rabbit whey acidic protein cDNA. Nucleic Acids Res. 16, 8180.

    Article  CAS  Google Scholar 

  • Devinoy, E., Stinnakre, M.G., Lavialle, F., Thepot, D. and Ollivier-Bousquet, M. (1995). Intracellular routing and release of caseins and growth hormone produced into milk from transgenic mice. Exp. Cell Res. 221, 272–280.

    Article  CAS  Google Scholar 

  • Dobie, K.W., Lee, M., Fantes, J.A., Graham, E., Clark, A.J., Springbett, A., Lathe, R. and McClenaghan, M. (1996). Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc. Natl. Acad. Sci. U.S.A. 93, 6659–6664.

    Article  CAS  Google Scholar 

  • Ebner, K. and Brodbeck, U. (1968). Biological role of alpha-lactalbumin: a review. J Dairy Sci 51, 317–322.

    Article  CAS  Google Scholar 

  • Edlund, A., Johansson, T., Leidvik, B. and Hansson, L. (1996). Structure of the human kappa-casein gene. Gene 174, 65–69.

    Article  CAS  Google Scholar 

  • Edwards, G.M., Wilford, F.H., Liu, X., Hennighausen, L., Djiane, J. and Streuli, C.H. (1998). Regulation of mammary differentiation by extracellular matrix involves protein-tyrosine phosphatases. J. Biol. Chem. 17, 9495–9500.

    Article  Google Scholar 

  • Eisenstein, R.S. and Rosen, J.M. (1988). Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level. Mol. Cell. Biol. 8, 3183–3190.

    CAS  Google Scholar 

  • Faerman, A., Barash, I., Puzis, R., Nathan, M., Hurwitz, D.R. and Shani, M. (1995). Dramatic heterogeneity of transgene expression in the mammary gland of lactating mice: a model system to study the synthetic activity of mammary epithelial cells. J. Histochem. Cytochem. 43, 461–470.

    Article  CAS  Google Scholar 

  • Finucane, K.A., McFadden, T.B., Bond, J.P., Kenelly, J.J. and Zhao, F.-Qi. (2008). Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct. Integr. Genomics 8, 251–264.

    Google Scholar 

  • Farrell, H. M. Jr., Malin, E.L., Brown, E.M. and Qi, P.X. (2006). Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr. Opin. Coll. Interf. Sci. 11, 135–147.

    Article  CAS  Google Scholar 

  • Flower, D.R. (1996). The lipocalin protein family: structure and function. Biochem. J. 318, 1–14.

    CAS  Google Scholar 

  • Folch, J.M., Coll, A. and Sanchez, A. (1994). Complete sequence of the caprine beta-lactoglobulin gene. J. Dairy Sci. 77, 3493–3497.

    Article  CAS  Google Scholar 

  • Folch, J.M., Coll, A., Hayes, H.C. and Sanchez, A. (1996). Characterization of a caprine beta-lactoglobulin pseudogene, identification and localization by in situ hybridization in goat, sheep and cow. Gene 24, 87–91.

    Article  Google Scholar 

  • Fujiwara, Y., Miwa, M., Nogami, M., Okumura, K., Nobori, T., Suzuki, T., Ueda, M. (1997). Genomic organization and chromosomal localization of the human casein gene family. Hum. Genet. 99, 368–373.

    Article  CAS  Google Scholar 

  • Fujiwara, Y., Miwa, M., Takahashi, R., Kodaira, K., Hirabayashi, M., Suzuki, T. and Ueda, M. (1999). High-level expressing YAC vector for transgenic animal bioreactors. Mol. Reprod. Dev. 52, 14–20.

    Article  Google Scholar 

  • Funder, J.W. (1989). Hormonal regulation of gene expression. Biochem. Soc. Symp. 55, 105–114.

    CAS  Google Scholar 

  • Gallagher, D.S., Schelling, C.P., Groenen, M.M.A. and Womack, J.E. (1994). Confirmation that the casein gene cluster resides on cattle chromosome 6. Mamm. Genome 5, 524.

    Article  CAS  Google Scholar 

  • Gallagher, D.S., Treadgill, D.W., Ryan, A.M., Womack, J.E. and Irwin, D.M. (1993). Physical mapping of the lysozyme gene family in cattle. Mamm. Genome 4, 368–373.

    Article  CAS  Google Scholar 

  • Geissler, E.N., Cheng, S.V., Gusella, J.F. and Housman, D.E. (1988). Genetic analysis of the dominant white-spotting (W) region on mouse chromosome 5: identification of clones DNA markers near W. Proc. Natl. Acad. Sci. U.S.A. 85, 9635–9639

    Article  CAS  Google Scholar 

  • Gellin, J., Echard, G., Yerle, M., Dalens, M., Chevalet, C. and Gillois, M. (1985). Localization of the alpha and beta casein genes to the q24 region of chromosome 12 in the rabbit (Oryctolagus cuniculus L.) by in situ hybridization. Cytogenet. Cell Genet. 39, 220–223.

    Article  CAS  Google Scholar 

  • George, S., Clark, A.J. and Archibald, A.L. (1997). Physical mapping of the murine casein locus reveals the gene order as alpha-beta-gamma-epsilon-kappa. DNA Cell. Biol. 16, 477–484.

    Article  CAS  Google Scholar 

  • Geyer, P.K. (1997). The role of insulator elements in defining domains of gene expression. Curr. Opin. Genet. Dev. 7, 242–248.

    Article  CAS  Google Scholar 

  • Gilchrist, S.E. and Alcorn J (2010). Lactation stage-dependent expression of transporters in rat whole mammary gland and primary epithelial organoids. Fundam. Clin. Pharmacol. 24, 205214.

    CAS  Google Scholar 

  • Gilmour, K.C., Pine, R. and Reich, N. (1995). Interleukin 2 activates STAT5 transcription factor (mammary gland factor) and specific gene expression in T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 92, 10772–10776.

    Article  CAS  Google Scholar 

  • Glick, B.S., Malhotra, Y. (1998). The curious status of the Golgi apparatus. Cell 95, 883–889.

    Article  CAS  Google Scholar 

  • Glombik, M.M. and Gerdes, H.H. (2000). Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82, 315–326.

    Article  CAS  Google Scholar 

  • Golden, K.L. and Rillema, J.A. (1995). Effects of prolactin on galactosyl transferase and alpha-lactalbumin mRNA accumulation in mouse mammary gland explants. Proc. Soc. Exp. Biol. Med. 209, 392–396.

    CAS  Google Scholar 

  • Groenen, M.A.M., Dijkhof, R.J.M., Verstege, A.J.M. and van der Poel, J.J. (1993). The complete sequence of the gene encoding bovine alpha-s2-casein. Gene 123, 187–193.

    Article  CAS  Google Scholar 

  • Groneberg, D.A., Doring, F., Theis, S., Nickolaus, M., Fischer, A. and Daniel, H. (2002). Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein. Am. J. Physiol. Endocrinol. Metab. 282, E1172–E1179.

    CAS  Google Scholar 

  • Grosclaude, F. (1979). Polymorphism of milk proteins: some biochemical and genetical aspects, in, Proc.16th International Conference Animal Blood Groups Biochemical Polymorphisms, International Society for Animal Blood Group Research, ed., International Society for Animal Blood Group Research, Leningrad. pp. 54–92.

    Google Scholar 

  • Grusby, M.J., Mitchell, S.C., Nabavi, N. and Glimcher, L.H. (1990). Casein expression in cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. U.S.A 87, 6897–6901.

    Article  CAS  Google Scholar 

  • Gu, Z., Eleswarapu, S. and Jiang, H. (2007). Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett. 581, 981–988.

    Article  CAS  Google Scholar 

  • Gupta, P., Rosen, J.M., D’Eustachio, P. and Ruddle, F.H. (1982). Localization of the casein gene family to a single mouse chromosome. J. Cell Biol. 93, 199–204

    Article  CAS  Google Scholar 

  • Gutierrez-Adan, A., Maga, E.A., Meade, H., Shoemaker C.F., Medrano J.F., Anderson G.B. and Murray J.D. (1996). Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein. J. Dairy Sci. 79, 791–799.

    Article  CAS  Google Scholar 

  • Guyette, W.A., Matusik, R.J. and Rosen, J.M. (1979). Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell 17, 1013–1023

    Article  CAS  Google Scholar 

  • Hajjoubi, S., Rival-Gerbier, S., Hayes, H., Floriot, S., Eggen, A., Piumi, F., Chardon, P., Houdebine, L.M. and Thepot, D (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104–112

    Article  CAS  Google Scholar 

  • Hall, L., Emery, D.C., Davies, M.S., Parker, D. and Craig, R.K. (1987). Organization and sequence of the human alpha-lactalbumin gene. Biochem. J. 242, 735–742

    CAS  Google Scholar 

  • Halliday, J.A., Bell, K., McKenzie, H.A. and Shaw, D.C. (1990). Feline whey proteins: identification, isolation and initial characterization of alpha-lactalbumin, beta-lactoglobulin and lysozyme. Comp. Biochem. Physiol. 95, 773–779.

    CAS  Google Scholar 

  • Hammond, C. and Helenius, A. (1995). Quality control in the secretory pathway. Curr. Opin. Cell. Biol. 7, 523–529.

    Article  CAS  Google Scholar 

  • Hansson, L., Edlund, A., Johansson, T., Hernell, O., Strömqvist, M., Lindquist, S., Lönnerdal, B. and Bergström, S. (1994). Structure of the human beta-casein encoding gene. Gene 139, 193–199.

    Article  CAS  Google Scholar 

  • Harris, S., Ali, S., Anderson, S., Archibald, A.L. and Clark, A.J. (1988). Complete nucleotide sequence of the genomic ovine beta-lactoglobulin gene. Nucleic Acids Res. 16, 10379–10380

    Article  CAS  Google Scholar 

  • Harris, S., McClenaghan, M., Simons, J.P., Ali, S. and Clark, A.J. (1990). Gene expression in the mammary gland. J. Reprod. Fertil. 88, 707–715

    Article  CAS  Google Scholar 

  • Hayes, H., Petit, E., Bouniol, C. and Popescu, P. (1993a). Localization of the alpha-S2-casein gene (CASAS2) to the homeologous cattle, sheep and goat chromosomes 4 by in situ hybridization. Cytogenet. Cell. Genet. 64, 282–285.

    Google Scholar 

  • Hayes, H., Petit, E., Lemieux, N. and Dutrillaux, B. (1992). Chromosomal localization of the ovine beta-casein gene by non-isotopic in situ hybridization and R-banding. Cytogenet. Cell. Genet. 61, 286–288.

    Article  CAS  Google Scholar 

  • Hayes, H., Popescu, P. and Dutrillaux, B. (1993b). Comparative gene mapping of lactoperoxidase, retinoblastoma and alpha-lactalbumin genes in cattle, sheep and goats. Mamm. Genome 4, 593–597.

    Article  CAS  Google Scholar 

  • Hayes, H.C. and Petit, E.J. (1993c). Mapping of the beta-lactoglobulin gene and of an immunoglobulin M heavy chain-like sequence to homoeologous cattle sheep, and goat chromosomes. Mamm. Genome 4, 207–210.

    Article  CAS  Google Scholar 

  • Heim, M.H. (1999). The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J. Recept. Signal Transduct. Res. 19, 75–120.

    Article  CAS  Google Scholar 

  • Hennighausen, L.G. and Sippel, A.E. (1982). Mouse whey acidic protein is a novel member of the family of four-disulfide core proteins. Nucleic Acids Res. 10, 2677–2684.

    Article  CAS  Google Scholar 

  • Hentze, M. and Kulozik, A.E. (1999). A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96, 307–310.

    Article  CAS  Google Scholar 

  • Hoffmann, E.K. and Simonsen, L.O. (1989). Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69, 315–382.

    CAS  Google Scholar 

  • Holt, C. and Sawyer, L. (1993). Caseins as rheomorphic proteins: interpretation of the primary and secondary structures of the ασ1-, β- and κ-caseins. J. Chem. Soc. Farad. Trans. 89, 2683–2692.

    Article  CAS  Google Scholar 

  • Hurley, W.L., Wang, H., Bryson, J.M. and Shennan D.B. (2000). Lysine uptake by mammary gland tissue from lactating sows. J. Anim. Sci. 78, 391–395.

    CAS  Google Scholar 

  • Jahn, R. and Scheller, R.H. (2006). SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell. Biol. 7, 631–643.

    Article  CAS  Google Scholar 

  • Jolivet, G., Devinoy, E., Fontaine, M.L. and Houdebine, L.M. (1992). Structure of the gene encoding rabbit alpha s1-casein. Gene 113, 257–262.

    Article  CAS  Google Scholar 

  • Jolivet, G., L’Hotte, C., Pierre, S., Tourkine, N. and Houdebine, L.M. (1996). The MGF/STAT5 binding site is necessary in the distal enhancer for high prolactin induction of transfected rabbit alpha-s1-casein-CAT gene transcription. FEBS Lett. 8, 257–262.

    Article  Google Scholar 

  • Jollès, J., Fiat, A.M., Schoentgen, F., Alais, C. and Jollès, P. (1974). The amino acid sequence of sheep kappa-A-casein. II. Sequence studies concerning the kappa-A-caseinoglycopeptide and establishment of the complete primary structure of the protein. Biochim. Biophys. Acta 365, 335–342.

    Article  Google Scholar 

  • Jones, W.K., Yu-Lee, L.Y., Clift, S.M., Brown, T.L. and Rosen, J.M. (1986). The rat casein multigene family. Fine structure and evolution of the beta-casein gene. J. Biol. Chem. 260, 7042–7050

    Google Scholar 

  • Kabotyanski, E.B., Huetter, M., Xian, W., Rijnkels, M. and Rosen, J.M. (2006). Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers. Mol. Endocrinol. 10, 2355–2368.

    Article  CAS  Google Scholar 

  • Kabotyanski, E.B., Rijnkels, M., Freeman-Zadrowski, C., Buser, A.C., Edwards, D.P. and Rosen, J.M. (2009). Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements. J. Biol. Chem. 284, 22815–22824.

    Article  CAS  Google Scholar 

  • Kanai, Y. and Hediger, M.A. (1992). Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471.

    Article  CAS  Google Scholar 

  • Kanai, Y., Smith, C.R. and Hediger, M.A. (1994). A new family of neurotransmitter transporters: the high affinity glutamate transporters. FASEB J. 8, 1450–1459.

    Google Scholar 

  • Kang, Y.K., Lee, C.S., Chung, A.S. and Lee, K.K. (1998). Prolactin-inducible enhancer activity of the first intron of the bovine beta-casein gene. Mol. Cells 30, 259–265.

    Google Scholar 

  • Kansal, R. and Kansal, V.K. (1996). Discrimination of transport systems of L-tyrosine in mouse mammary gland: characterisation of system T. Indian J. Exp. Biol. 34, 750–757.

    Google Scholar 

  • Kapelinskaia, T.V., Tkach, T.M., Smirnov, I.K. and Gorodetskii, S.I. (1989). The Bos taurus casein genes. Isolation and characterization of the kappa-casein gene. Genetika 25, 15–23.

    CAS  Google Scholar 

  • Kawasaki, K., Lafont, A.G. and Sire, J.Y. (2011). The evolution of milk casein genes from tooth genes before the origin of mammals. Mol Biol Evol. 28, 2053–2061.

    Google Scholar 

  • Kazansky, A.V., Raught, B., Lindsey, S.M., Wang, Y.F. and Rosen, J.M. (1995). Regulation of mammary gland factor/Stat5 during mammary gland development. Mol. Endocrinol. 9, 1598–1609.

    Article  CAS  Google Scholar 

  • Kim, P.S. and Arvan, P. (1991). Folding and assembly of newly synthesized thyroglobulin occurs in a pre-Golgi compartment. J. Biol. Chem. 266, 12412–12418.

    CAS  Google Scholar 

  • Koczan, D., Hobom, G. and Seyfert, H.M. (1991). Genomic organization of the bovine αs1-casein gene. Nucleic Acids Res. 19, 5591–5596.

    Article  CAS  Google Scholar 

  • Kolb, A.F., Günzburg, W.H., Albang, R., Brem, G., Erfle, V. and Salmons, B. (1994). Negative regulatory element in the mammary specific whey acidic protein promoter. J. Cell. Biochem. 56, 245–261.

    Article  CAS  Google Scholar 

  • Kolb, A. F. (2002). Structure and regulation of the murine γ-casein gene. Biochem. Biophys. Acta 1579, 101–116.

    Article  CAS  Google Scholar 

  • Kolb, A. F. (2003). The first intron of the murine β-casein gene contains a functional promoter. Biochem. Biophys. Res. Commun. 306, 1099–1105.

    Article  CAS  Google Scholar 

  • Kumar, S., Clarke, A.R., Hooper, M.L., Horne, D.S., Law, A.J., Leaver, J., Springbett, A., Stevenson, E. and Simons, J.P. (1994). Milk composition and lactation of beta-casein deficient mice. Proc. Natl. Acad. Sci. U.S.A 91, 6138–6142.

    Article  CAS  Google Scholar 

  • Laird, J.E., Jack, L., Hall, L., Boulton, A., Parker, D. and Craig, R.K. (1988). Structure and expression of the guinea-pig alpha-lactalbumin gene. Biochem. J. 254, 85–94

    CAS  Google Scholar 

  • Laspiur, J.P., Burton, J.L., Weber, P.S.D., Moore, J., Kirkwood, R.N. and Trottier, N.L. (2009). Dietary protein intake and stage of lactation differentially modulate amino acid transporter mRNA abundance in porcine mammary tissue. J. Nutr. 139, 1677–1684.

    Article  CAS  Google Scholar 

  • Lear, T.L., Brandon, R., Masel, A., Bell, K. and Bailey, E. (1998). Molecular cloning and chromosomal localization of horse alpha-1-antitrypsin (AAT), beta-lactoglobulin 1 and 2 (BLG, BLG2), lactotransferrin (LTF) and transferrin (TF). Anim. Genet. 29, 43–49.

    Article  Google Scholar 

  • Lechner, J., Welte, T., Tomasi, J.K., Bruno, P., Cairns, C., Gustafsson, J.A. and Doppler, W. (1997). Promoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of beta-casein gene transcription. J. Biol. Chem. 272, 20954–20960.

    Article  CAS  Google Scholar 

  • Lee, C.S. and Oka, T. (1992). A pregnancy-specific mammary nuclear factor involved in the repression of the mouse beta-casein gene transcription by progesterone. J. Biol. Chem. 267, 5797–5801.

    CAS  Google Scholar 

  • Lee, K.F., Atiee, S.H., Henning, S.J. and Rosen, J.M. (1989). Relative contribution of promoter and intragenic sequences in the hormonal regulation of rat beta-casein transgenes. Endocrinology 3, 447–453.

    CAS  Google Scholar 

  • Lee, M.C., Miller, E.A., Goldberg, J., Orci, L. and Schekman, R. (2004). Bi-directional protein transport between the ER and Golgi. Ann. Rev. Cell Dev. Biol. 20, 87–123.

    CAS  Google Scholar 

  • Lefèvre, C.M., Sharp, J.A. and Nicholas, K.R. (2009). Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod. Fertil. Dev. 21, 1015–1027.

    Article  CAS  Google Scholar 

  • Lemay D.G., Lynn D.J., Martin W.F., Neville M.C., Casey T.M., Rincon G., Kriventseva E.V., Barris W.C., Hinrichs A.S., Molenaar A.J., Pollard K.S., Maqbool N.J., Singh K., Murney R., Zdobnov E.M., Tellam R.L., Medrano J.F., German J.B. and Rijnkels M. (2009). The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol. 10, R43

    Article  CAS  Google Scholar 

  • Le Parc, A., Leonil, J. and Chanat, E. (2010). αs1-Casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form. BMC Cell Biol. 11, 65–76.

    Article  CAS  Google Scholar 

  • Leroux, C., Mazure, N. and Martin, P. (1992). Mutations away from splice site recognition sequences might cis-modulate alternative splicing of goat alpha-S1-casein transcripts. Structural organization of the relevant gene. J. Biol. Chem. 267, 6147–6157.

    CAS  Google Scholar 

  • Li, S. and Rosen, J.M. (1994a). Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J. Biol. Chem. 269, 14235–14243.

    CAS  Google Scholar 

  • Li, S. and Rosen, J.M. (1994b). Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol. Endocrinol. 8, 1328–1335.

    Article  CAS  Google Scholar 

  • Li, S. and Rosen, J.M. (1995). CTF/NF1 and mammary gland factor (Stat5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol. 15, 2063–2070.

    CAS  Google Scholar 

  • Liao, Y., Du, X. and Lönnerdal, B. (2010). miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J. Nutr. 140, 1552–1556.

    Article  CAS  Google Scholar 

  • Lin, C.Q., Dempsey, P.J., Coffey, R.J. and Bissell, M.J. (1995). Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice. J. Cell Biol. 129, 1115–1126.

    Article  CAS  Google Scholar 

  • Lingappa, V.R., Lingappa, J.R., Prasad, R., Ebner, K.E. and Blobel, G. (1978). Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc. Natl. Acad. Sci. U. S. A. 75, 2338–2342.

    Article  CAS  Google Scholar 

  • Liu, H., Wang, L., Wang, L.-B., Li, S.-L. and Cao, Z.-J. (2010). Responses of mammary amino acid metabolism and aminopeptidase N gene expression to duodenal soyabean small peptides and infusion of free amino acids in lactating goats. J. Anim. Feed Sci. 19, 24–36.

    CAS  Google Scholar 

  • Liu, X., Robinson, G.R., Wagner, K.U., Garrett, L., Wynshaw-Boris, A. and Hennighausen, L. (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186.

    Article  CAS  Google Scholar 

  • Lopez, A., Torres, N., Ortiz, V., Aleman, G., Hernandez-Pando, R. and Tovar, A.R. (2006). Characterization and regulation of the gene expression of amino acid transport system A (SNAT2) in rat mammary gland. Am. J. Physiol. Endocrinol. Metab. 291, E1059–E1066.

    Article  CAS  Google Scholar 

  • Lollivier, V., Marnet, P.G., Delpal, S., Rainteau, D., Achard, C., Rabot, A. and Ollivier-Bousquet, M. (2006). Oxytocin stimulates secretory processes in lactating rabbit mammary epithelial cells. J. Physiol. 570, 125–140.

    Article  CAS  Google Scholar 

  • Martinez-Lopez, I., Garcia, C., Barber, T., Vina, J.R. and Miralles, V.J. (1999). The L-glutamate transporters GLAST (EAAT1) and GLT-1(EAAT2): expression and regulation in the rat lactating mammary gland. Mol. Membr. Biol. 15, 237–242.

    Article  Google Scholar 

  • Maschio, A., Brickell, P.M., Kioussis, D., Mellor, A.L., Katz, D. and Craig, R.K. (1991). Transgenic mice carrying the guinea-pig alpha-lactalbumin gene transcribe milk protein genes in their sebaceous glands during lactation. Biochem. J. 275, 459–467.

    CAS  Google Scholar 

  • Mather, I.H. and Keenan, T.W. (1983). Function of endomembranes and the cell surface in the secretion of organic milk constituents, in, Biochemistry of Lactation. T.B. Mepham, ed. Amsterdam, Elsevier IP. pp. 231–283.

    Google Scholar 

  • Mather, I.H. and Keenan, T.W. (1998). Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3, 259–273.

    Article  CAS  Google Scholar 

  • McConkey, E.H., Menon, R., Williams, G., Baker, E. and Sutherland, G.R. (1996). Assignment of the gene for beta-casein (CSN2) to 4q13 -  >  q21 in humans and 3p13 -  >  p12 in chimpanzees. Cytogenet. Cell Genet. 72, 60–62.

    Article  CAS  Google Scholar 

  • McKnight, R.A., Spencer, M., Dittmer, J., Brady, J.N., Wall, R.J. and Hennighausen, L. (1995). An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol. Endocrinol. 9, 717–724.

    Article  CAS  Google Scholar 

  • McKnight, R.A., Spencer, M., Wall, R.J. and Hennighausen, L. (1996). Severe position effects imposed on a 1 kb mouse whey acidic protein gene promoter are overcome by heterogeneous matrix attachment regions. Mol. Reprod. Dev. 44, 179–184.

    Article  CAS  Google Scholar 

  • Meier, V.S. and Groner, B. (1994). The nuclear factor YY1 participates in repression of the beta-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction. Mol. Cell. Biol. 14, 128–137.

    CAS  Google Scholar 

  • Mepham, T.B., Overthrow, J.I. and Short A.H. (1985). Epithelial cell entry and exit competition amongst amino acids in the perfused isolated lactating mammary gland of guinea pig, in, Carrier Mediated Transport of Solutes from Blood to Tissue, D.L. Yudilevich and G.E. Mann, eds., Longman, London. pp 369–372.

    Google Scholar 

  • Mercier, J.C. and Vilotte, J.L. (1993). Structure and function of milk protein genes. J. Dairy Sci. 76, 3079–3098.

    Article  CAS  Google Scholar 

  • Millar, I.D., Barber, M.C., Lomax, M.A., Travers, M.T. and Shennan, D.B. (1997a). Mammary protein synthesis is acutely regulated by the cellular hydration state. Biochem. Biophys. Res. Commun. 230, 351–355.

    Article  CAS  Google Scholar 

  • Millar, I.D., Calvert, D.T., Lomax, M.A. and Shennan, D.B. (1996). The mechanism of L-glutamate transport by lactating rat mammary tissue. Biochim. Biophys. Acta 1282, 200–206.

    Article  Google Scholar 

  • Millar, I.D., Calvert, D.T., Lomax, M.A. and Shennan, D.B. (1997b). Substrate specificity of the mammary tissue anionic amino acid carrier operating in the cotransport and exchange modes. Biochim. Biophys. Acta 1326, 92–102.

    Article  CAS  Google Scholar 

  • Millar, I.D. and Shennan, D.B. (1999). The regulation of Na+-dependent anionic amino acid transport by the rat mammary gland. Biochim. Biophys. Acta 1421, 340–346.

    Article  CAS  Google Scholar 

  • Mizoguchi, Y., Kim, J.Y., Enami, J. and Sakai, S. (1997). The regulation of the prolactin receptor gene expression in the mammary gland of early pregnant mouse. Endocr. J. 44, 53–58.

    Article  CAS  Google Scholar 

  • Molenaar, A.J., Davis, S.R. and Wilkins, R.J. (1992). Expression of alpha-lactalbumin, alpha-s1-casein and lactoferrin genes is heterogeneous in sheep and cattle mammary tissue. J. Histochem. Cytochem. 40, 611–618.

    Article  CAS  Google Scholar 

  • Montazer-Torbati, M.B., Hue-Beauvais, C., Droineau, S., Ballester, M., Coant, N., Aujean, E., Petitbarat, M., Rijnkels, M. and Devinoy, E. (2008). Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes. Exp. Cell Res. 314, 975–987.

    Article  CAS  Google Scholar 

  • Moore, A., Hall, L. and Hamilton, D.W. (1990). An 18-kDa androgen-regulated protein that modifies galactosyltransferase activity is synthesized by the rat caput epididymidis, but has no structural similarity to rat milk alpha-lactalbumin. Biol. Reprod. 43, 497–506.

    Article  CAS  Google Scholar 

  • Morvan, J. and Tooze, S.A. (2008). Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem. Cell Biol. 129, 243–252.

    Article  CAS  Google Scholar 

  • Myers, C.A., Schmidhauser, C., Mellentin-Michelotti, J., Fragoso, G., Roskelley, C.D., Casperson, G., Mossi, R., Pujuguet, P., Hager, G. and Bissell, M.J. (1998). Characterization of BCE-1, a transcriptional enhancer regulated by prolactin and extracellular matrix and modulated by the state of histone acetylation. Mol. Cell. Biol. 18, 2184–2195.

    CAS  Google Scholar 

  • Neville, M.C., Chatfield, K., Hansen, L., Lewis, A., Monks, J., Nuijens, J., Ollivier-Bousquet, M., Schanbacher, F., Sawicki, V. and Zhang, P. (1998). Lactoferrin secretion into mouse milk. Development of secretory activity, the localization of lactoferrin in the secretory pathway, and interactions of lactoferrin with milk iron. Adv. Exp. Med. Biol. 443, 141–153.

    Google Scholar 

  • Neville, M.C., Lobitz, C.J., Ripoll, E.A. and Tinney, C. (1980). The sites of α-aminoisobutyric acid uptake in normal mammary gland and ascites tumor cells. J. Biol. Chem. 255, 7311–7316.

    CAS  Google Scholar 

  • Neville, M.C. and Watters, C.D. (1983). Secretion of calcium into milk: review. J. Dairy Sci. 66, 371–380.

    Article  CAS  Google Scholar 

  • Ollivier-Bousquet, M. (1993). Secrétion des caséines: régulation hormonale, in, Biologie de la Lactation, Martinet, J. and Houdebine, L.M. eds., pp. 367–387. NRA-INSERM, France.

    Google Scholar 

  • Ollivier-Bousquet, M. (1997). Milk protein transfer in the mammary cell. Flem. Vet. J. 66 (Suppl.), 125–142.

    Google Scholar 

  • Onoda, M. and Inano, H. (1997). Distribution of casein-like proteins in various organs of rat. J. Histochem. Cytochem. 45, 663–674.

    Article  CAS  Google Scholar 

  • Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science 189, 347–358.

    Article  CAS  Google Scholar 

  • Papiz, M.Z., Sawyer, L., Eliopoulos, E.E., North, A.C.T., Findlay, J.B.C., Sivaprasadavao, R., Jones, T.A., Newcomer, M.E. and Kraulis, P.J. (1986). The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324, 383–385.

    Article  CAS  Google Scholar 

  • Passey, R.J. and McKinlay, A.G. (1995). Characterization of a second, apparently inactive, copy of the bovine beta-lactoglobulin gene. Eur. J. Biochem. 233, 736–743.

    Article  CAS  Google Scholar 

  • Pauloin, A., Delpal, S., Chanat, E., Lavialle, F., Aubourg, A. and Ollivier-Bousquet M. (1997). Brefeldin A differently affects basal and prolactin-stimulated milk protein secretion in lactating rabbit mammary epithelial cells. Eur. J. Cell Biol. 72, 324–336.

    CAS  Google Scholar 

  • Pauloin, A., Tooze, S.A., Michelutti, I., Delpal, S. and Ollivier-Bousquet, M. (1999). The majority of clathrin coated vesicles from lactating rabbit mammary gland arises from the secretory pathway. J. Cell Sci. 112(Pt 22), 4089–4100.

    CAS  Google Scholar 

  • Pechoux, C., Boisgard, R., Chanat, E. and Lavialle, F. (2005). Ca(2+)-independent phospholipase A2 participates in the vesicular transport of milk proteins. Biochim. Biophys. Acta 1743, 317–329.

    Article  CAS  Google Scholar 

  • Pelham, H.R. (1989). Control of protein exit from the endoplasmic reticulum. Ann. Rev. Cell Biol. 5, 1–23.

    Article  CAS  Google Scholar 

  • Pena, R.N., Folch, J.M., Sanchez, A. and Whitelaw, C.B.A. (1998). Chromatin structures of goat and sheep beta-lactoglobulin gene differ. Biochem. Biophys. Res. Commun. 252, 649–653.

    Article  CAS  Google Scholar 

  • Pena, R.N., Sanchez, A., Coll, A. and Folch, J.M. (1999). Isolation, sequencing and relative quantification by fluorescent-ratio PCR of feline beta-lactoglobulin I, II and III cDNAs. Mamm. Genome 10, 560–564.

    Article  CAS  Google Scholar 

  • Perez, M.J., Leroux, C., Bonastre, A.S. and Martin, P. (1994). Occurrence of a LINE sequence in the 3′ UTR of the goat alpha-s1-casein E-encoding allele associated with reduced protein synthesis level. Gene 147, 179–187.

    Article  CAS  Google Scholar 

  • Persuy, M.A., Printz, C., Medrano, J.F. and Mercier, J.C. (1996). One mutation might be responsible for the absence of beta-casein in two breeds of goats. Anim. Genet. 27, 96–102.

    Google Scholar 

  • Persuy, M.A., Stinnakre, M.G., Printz, C., Mahé, M.F. and Mercier, J.C. (1992). High expression of the caprine beta-casein gene in transgenic mice. Eur. J. Biochem. 205, 887–891

    CAS  Google Scholar 

  • Phi-Van, L. and Strätling, W.H. (1988). The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J. 7, 655–664.

    CAS  Google Scholar 

  • Pierre, S., Jolivet, G., Devinoy, E. and Houdebine, L.M. (1994). A combination of distal and proximal regions is required for efficient prolactin regulation of transfected rabbit alpha-s1-casein chloramphenicol acetyltransferase constructs. Mol. Endocrinol. 8, 1720–1730.

    Article  CAS  Google Scholar 

  • Pines, G., Danbolt, N.C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E. and Kanner, B.L. (1992). Cloning and expression of a rat brain L-glutamate transporter. Nature 360, 464–467.

    Article  CAS  Google Scholar 

  • Pitelka, D.R. and Hamamoto, S.T. (1983). Ultrastructure of the mammary secretory cell, in, Biochemistry of Lactation, T.B. Mepham, ed., Elsevier Science Publishers B.V., pp. 29–70. Amsterdam, New York.

    Google Scholar 

  • Prasad, R., Hudson, B.G., Butkowski, R., Hamilton, J.W. and Ebner, K.E. (1979). Resolution of the charge forms and amino acid sequence and location of a tryptic glycopeptide in rat alpha-lactalbumin. J. Biol. Chem. 254, 10607–10614.

    CAS  Google Scholar 

  • Provot, C., Persuy, M.A. and Mercier, J.C. (1995). Complete sequence of the ovine beta-casein-encoding gene and interspecies comparison. Gene 154, 259–263.

    Article  CAS  Google Scholar 

  • Qasba, P.K. and Safaya, S.K. (1984). Similarity of the nucleotide sequences of rat alpha-lactalbumin and chicken lysozyme genes. Nature 608, 377-380

    Article  Google Scholar 

  • Qasba, P.K., Hewlett, I.K. and Byers, S. (1983). The presence of the milk protein alpha-lactalbumin and its mRNA in the rat epididymis. Biochem. Biophys. Res. Commun. 30, 306–312.

    Article  Google Scholar 

  • Rando, A., Di Gregorio, P., Ramunno, L., Mariani, P., Fiorella, A., Senese, C., Marletta, D. and Masina, P. (1998). Characterization of the CSNAG allele of the bovine alpha-s1-casein locus by the insertion of a relict of a long interspersed element. J. Dairy Sci. 81, 1735–1742.

    Article  CAS  Google Scholar 

  • Rando, A., Pappalardo, M., Capuano, M., Di Gregorio, P. and Ramunno, L. (1996). Two mutations might be responsible for the absence of beta-casein in goat milk. Anim. Genet. 27, 31.

    Google Scholar 

  • Raught, B., Liao, W.S.L. and Rosen, J.M. (1995). Developmentally and hormonally regulated CCAAT/enhancer-binding protein isoforms influence beta-casein gene expression. Mol. Endocrinol. 9, 1223–1232.

    Article  CAS  Google Scholar 

  • Reinhardt, T.A. and Lippolis, J.D. (2008). Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J. Dairy Sci. 91, 2307–2318.

    Article  CAS  Google Scholar 

  • Rhoads, R.E. and Grudzien-Nogalska, E. (2007). Translational regulation of milk protein synthesis at secretory activation. J. Mammary Gland Biol. Neoplasia 12, 283–292.

    Article  Google Scholar 

  • Riebeling, C., Morris, A.J. and Shields, D. (2009). Phospholipase D in the Golgi apparatus. Biochim. Biophys. Acta 1791, 876–880.

    Article  CAS  Google Scholar 

  • Rijnkels, M. (2002). Multispecies comparison of the casein gene loci and evolution of casein gene family. J. Mammary Gland Biol. Neoplasia 7, 327–345.

    Article  Google Scholar 

  • Rijnkels, M., Kabotyanski, E., Montazer-Torbati, M.B., Beauvais, C.H., Vassetzky, Y., Rosen, J.M. and Devinoy, E. (2010). The epigenetic landscape of mammary gland development and functional differentiation. J. Mammary Gland Biol. Neoplasia 15, 85–100.

    Article  Google Scholar 

  • Rijnkels, M., Kooiman, P.M., de Boer, H.A. and Pieper, F.R. (1997b). Organization of the bovine casein gene locus. Mamm. Genome 8, 148–152.

    Article  CAS  Google Scholar 

  • Rijnkels, M., Meershoek, E., de Boer, H.A. and Pieper, F.R. (1997c). Physical map and localization of the human casein gene locus. Mamm. Genome 8, 285–286.

    Article  CAS  Google Scholar 

  • Rijnkels, M., Wheeler, D.A., de Boer, H.A. and Pieper, F.R. (1997a). Structure and expression of the mouse casein gene locus. Mamm. Genome 8, 9–15.

    Article  CAS  Google Scholar 

  • Rival-Gervier, S., Thepot, D., Jolivet, G. and Houdebine, L.M. (2003). Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes. Biochim. Biophys. Acta 1627, 7–14.

    Article  CAS  Google Scholar 

  • Roberts, B., DiTullio, P., Vitale, J., Hehir, K. and Gordon, K. (1992). Cloning of the goat beta-casein-encoding gene and expression in transgenic mice. Gene 121, 255–262.

    Article  CAS  Google Scholar 

  • Robinson, C. and Kolb, A. F. (2009). Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion. Exp. Cell Res. 315, 508–22.

    Article  CAS  Google Scholar 

  • Robinson, G.W., Johnson, P.F., Hennighausen, L. and Sterneck, E. (1998). The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 12, 1907–1916.

    Article  CAS  Google Scholar 

  • Robinson, G.W., McKnight, R.A., Smith, G.H. and Hennighausen, L. (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121, 2079–2090.

    CAS  Google Scholar 

  • Rohrer, G.A., Alexander, L.J. and Beattie, C.W. (1997). Mapping genes located on human chromosomes 2 and 12 to porcine chromosomes 15 and 5. Anim. Genet. 28, 448–450.

    Article  CAS  Google Scholar 

  • Rosen, J.M. (1987). Milk protein gene structure and expression, in, The Mammary Gland, Neville, M.C. and Daniel, C.W., eds., Plenum Publishing Corporation, New York. pp. 301–322

    Google Scholar 

  • Rosen, J.M., Li, S., Raught, B. and Hadsell, D. (1996). The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Am. J. Clin. Nutr. 63, 627–632.

    Google Scholar 

  • Rosen, J.M., Mediona, D., Schlein, A.R., Eisenstein, R.S. and Yu-Lee, L.Y. (1988). Hormonal and cell-substratum regulation of casein gene expression at the posttranscriptional level, in, Steroid Hormone Action, G. Ringold (ed.) Alan R. Liss. Inc. New York. pp 269–278

    Google Scholar 

  • Rosen, J.M., Rodgers, J.R., Couch, C.H., Bisbee, C.A., David-Inouye, Y., Campbell, S.M. and Yu-Lee, L.Y. (1986). Multihormonal regulation of milk protein gene expression. Ann. N. Y. Acad. Sci. 478, 63–76

    Article  CAS  Google Scholar 

  • Rosen, J.M., Zahnow, C., Kazansky, A. and Raught, B. (1998). Composite response elements mediate hormonal and developmental regulation of milk protein gene expression. Biochem. Soc. Symp. 63, 101–113.

    CAS  Google Scholar 

  • Rudolph, M.C., McManaman, J. L., Phang, T., Russell, T., Kominsky, D.J., Serkova, N.J., Stein, T., Anderson, S.M. and Neville, M.C. (2007). Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28, 323–336.

    CAS  Google Scholar 

  • Rothman, J.E. and Wieland, F.T. (1996). Protein sorting by transport vesicles. Science 272, 227–234.

    Article  CAS  Google Scholar 

  • Saidi, S., Rival-Gervier, S., Daniel-Carlier, N., Thepot, D., Morgenthaler, C., Viglietta, C., Prince, S., Passet, B., Houdebine, L.M. and Jolivet, G. (2007). Distal control of the pig whey acidic protein (WAP) locus in transgenic mice. Gene 401, 97–107.

    Article  CAS  Google Scholar 

  • Schatz, G., Dobberstein, B. (1996). Common principles of protein translocation across membranes. Science 271, 1519–1526.

    Article  CAS  Google Scholar 

  • Schmidhausser, C. Casperson, G.F., Myers, C.A., Sanzo, K.T., Bolten, S. and Bissell, M.J. (1992). A novel transcriptional enhancer is involved in the prolactin- and extracellular matrix-dependent regulation of beta-casein gene expression. Mol. Biol. Cell 3, 699–709.

    Google Scholar 

  • Schmidt, J.A., Kalkofen, D.N., Donovan, K.W. and Brown, W.J. (2010). A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking. Traffic 11, 1530–1536.

    Article  CAS  Google Scholar 

  • Schmitt-Ney, M., Doppler, W., Ball, R.K. and Groner, B. (1991). Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol. Cell. Biol. 11, 3745–3755.

    CAS  Google Scholar 

  • Sdassi, N., Silveri, L., Laubier, J., Tilly, G., Costa, J., Layani, S., Vilotte, J.L. and Le Provost, F. (2009). Identification and characterization of new miRNA cloned from normal mouse mammary gland. BMC Genomics 10, 149.

    Article  CAS  Google Scholar 

  • Seagroves, T.N., Krnacik, S., Raught, B., Gay, J., Burgess-Beusse, B., Darlington, G.J. and Rosen, J.M. (1998). C/EBPbeta, but not C/EBPalpha is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Gene Devp. 12, 1917–1928

    Article  CAS  Google Scholar 

  • Seddiki, T. and Ollivier-Bousquet, M. (1991). Temperature dependence of prolactin endocytosis and casein exocytosis in epithelial mammary cells. Eur. J. Cell Biol. 55, 60–70.

    CAS  Google Scholar 

  • Sharp, J.A., Lefèvre, C. and Nicholas, K.R. (2008). Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol. 6, 48–57.

    Article  CAS  Google Scholar 

  • Shekar, P.C., Goel, S., Rani, S.D.S., Sarathi, D.P., Alex, J.L., Singh, S. and Kumar, S. (2006). kappa-Casein-deficient mice fail to lactate. Proc. Natl. Acad. Sci. U.S.A 103, 8000–8005.

    Article  CAS  Google Scholar 

  • Shennan, D.B. (1995). Identification of a high affinity taurine transporter which is not dependent on chloride. Biosci. Rep. 15, 231–239.

    Article  CAS  Google Scholar 

  • Shennan, D.B. and McNeillie, S.A. (1994a). Characteristics of α-aminoisobutyric acid transport by the lactating rat mammary gland. J. Dairy Res. 61, 9–19.

    Article  Google Scholar 

  • Shennan, D.B. and McNeillie, S.A. (1994b). High affinity (Na+ + Cl-)-dependent transport by lactating mammary tissue. J. Dairy Res. 61, 335–343.

    Article  CAS  Google Scholar 

  • Shennan, D.B. and McNeillie, S.A. (1994c). Milk accumulation down regulates amino acid uptake via systems A and L by lactating mammary tissue. Horm. Metab. Res. 26, 611.

    Article  CAS  Google Scholar 

  • Shennan, D.B. and Peaker, M. (2000).Transport of milk constituents by the mammary gland. Physiol. Rev. 80, 925–951.

    CAS  Google Scholar 

  • Shennan, D.B., Backwell, F.R.C. and Calvert, D.T. (1999). Metabolism of aminoacyl-p-nitroanilides by rat mammary tissue. Biochim. Biophys. Acta 1427, 227–235.

    Article  CAS  Google Scholar 

  • Shennan, D.B., Calvert, D.T., Backwell, F.R.C. and Boyd, C.A.R. (1998). Peptide aminonitrogen transport by the lactating rat mammary gland. Biochim. Biophys. Acta 1373, 252–260.

    Article  CAS  Google Scholar 

  • Shennan, D.B., Calvert, D.T., Travers, M.T., Kudo, Y. and Boyd, C.A.R. (2002). A study of L-leucine, L-phenylalanine and L-alanine transport in the perfused rat mammary gland: possible involvement of LAT1 and LAT2. Biochim. Biophys. Acta 1564, 133–139.

    Article  CAS  Google Scholar 

  • Shennan, D.B., Cliff, M.J. and Hawkins, P. (1996). Volume-sensitive taurine efflux from mammary tissue is not obliged to utilize volume-activated anion channels. Biosci. Rep. 16, 459–465.

    Article  CAS  Google Scholar 

  • Shennan, D.B., McNeillie, S.A. and Curran, D.E. (1994). The effect of a hyposmotic shock on amino acid efflux from lactating rat mammary tissue : stimulation of taurine and glycine efflux via a pathway distinct from anion exchange and volume-activated anion channels. Exp. Physiol. 79, 797–808.

    CAS  Google Scholar 

  • Shennan, D.B., McNeillie, S.A., Jamieson, E.A. and Calvert, D.T. (1994). Lysine transport in lactating rat mammary tissue : evidence for an interaction between cationic and neutral amino acids. Acta Physiol. Scand. 151, 461–466.

    Article  CAS  Google Scholar 

  • Shennan, D.B., Millar, I.D. and Calvert, D.T. (1997). Mammary-tissue amino acid transport systems. Proc. Nutr. Soc. 56, 177–191.

    Article  CAS  Google Scholar 

  • Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.

    Article  CAS  Google Scholar 

  • Soulier, S., Lepourry, L., Stinnakre, M.G., Langley, B., L’Huillier, P.J., Paly, J., Djiane, J., Mercier, J.C. and Vilotte, J.L. (1999). Introduction of a proximal Stat5 site in the murine alpha-lactalbumin promoter induces prolactin dependency in vitro and improves expression frequency in vivo. Transgenic Res. 8, 23–31.

    Article  CAS  Google Scholar 

  • Soulier, S., Mercier, J.C., Vilotte, J.L., Anderson, J., Clark, J. and Provot, C. (1989). Characterization of genomic clones homologous to the alpha-lactalbumin gene in the bovine and ovine species. Gene 83, 331–338.

    Article  CAS  Google Scholar 

  • Starr, R. and Hilton, D.J. (1999). Negative regulation of the JAK/STAT pathway. Bioessays 21, 47–52.

    Article  CAS  Google Scholar 

  • Stinnakre, M.G., Soulier, S., Schibler, L., Lepourry, L., Mercier, J.C. and Vilotte, J.L. (1999). Position-independent and copy-number-related expression of a goat bacterial artificial chromosome alpha-lactalbumin gene in transgenic mice. Biochem. J. 339, 33–36.

    Article  CAS  Google Scholar 

  • Stinnakre, M.G., Vilotte, J.L., Soulier, S. and Mercier, J.C. (1994). Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc. Natl. Acad. Sci. U.S.A 91, 6544–6548.

    Article  CAS  Google Scholar 

  • Stöcklin, E., Wissler, M., Gouilleux, F. and Groner, B. (1996). Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383, 726–728.

    Article  Google Scholar 

  • Stoecklin, E., Wissler, M., Morriggl, R. and Groner, B. (1997). Specific DNA binding of Stat5, but not of glucocorticoid receptor, is required for their functional cooperation in the regulation of gene transcription. Mol. Cell. Biol. 17, 6708–6716.

    CAS  Google Scholar 

  • Storck, T., Schulte, S., Hofmann, K. and Stoffel, W. (1992). Structure, expression and functional analysis of a Na+-dependent glutamate aspartate transporter from rat brain. Proc. Natl. Acad. Sci. U.S.A. 89, 10959–10965.

    Article  Google Scholar 

  • Streuli, C.H., Edwards, G.M., Delcommenne, M., Whitelaw, C.B.A., Burdon, T.G., Schindler, C. and Watson, C.J. (1995). Stat5 as a target for regulation by extracellular matrix. J. Biol. Chem. 270, 21639–21644.

    Article  CAS  Google Scholar 

  • Tanaka, T., Haneda, S., Imakawa, K., Sakai., S. and Nagaoka., K. (2009). A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77, 181–187.

    Article  CAS  Google Scholar 

  • Tang, Y. (1993). No alpha-lactalbumin-like activity detected in a low molecular mass protein fraction of rat epididymal extract. Reprod. Fertil. Dev. 5, 229–237.

    Article  CAS  Google Scholar 

  • Thépot, D., Fontaine, M.L., Houdebine, L.M. and Devinoy, E. (1990). Complete sequence of the rabbit WAP gene. Nucleic Acids Res. 18, 3641.

    Article  Google Scholar 

  • Thépot, D., Fontaine, M.L., Houdebine, L.M. and Devinoy, E. (1991). Structure of the gene encoding rabbit beta-casein. Gene 97, 301–306

    Google Scholar 

  • Threadgill, D.W. and Womack, J.E. (1990). Genomic analysis of the major bovine casein genes. Nucleic Acids Res. 18, 6935–6942

    Article  CAS  Google Scholar 

  • Tomic S, Chughtai N. and Ali S. (1999). SOCS-1, -2, -3: selective targets and functions downstream of the prolactin receptor. Mol. Cell. Endocrinol. 158, 45–54.

    Article  CAS  Google Scholar 

  • Tomlinson, A.M., Cox, R.D., Lehrach, H.R. and Dalrymple, M.A. (1996). Restriction map of two yeast artificial chromosomes spanning the murine casein locus. Mamm. Genome 7, 342–344.

    Article  Google Scholar 

  • Tooze, S.A. (1998). Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim. Biophys. Acta 1404, 231–244.

    Article  CAS  Google Scholar 

  • Topcic, D., Auguste A., De Leo, A.A., Lefevre, C., Digby, M.R. and Nicholas, K.R. (2009). Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene; new insights into the function of the protein. Evol. Dev. 11, 363–375.

    Article  CAS  Google Scholar 

  • Triplett, A. A., Sakamoto, K., Matulka, L. A., Shen, L., Smith, G. H. and Wagner, K. U. (2005). Expression of the whey acidic protein (WAP) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis 43, 1–11.

    Article  CAS  Google Scholar 

  • Turner, M.D., Handel, S.E., Wilde, C.J. and Burgoyne, R.D. (1993). Differential effect of brefeldin A on phosphorylation of the caseins in lactating mouse mammary epithelial cells. J. Cell Sci. 106, 1221–1226.

    CAS  Google Scholar 

  • Ucar, A., Vafaizadeh, V., Jarry, H., Fiedler, J., Klemmt, P.A., Thum, T., Groner, B. and Chowdhury, K. (2010). miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat. Genet. 42, 1101–1108.

    Article  CAS  Google Scholar 

  • Udy, G.B., Towers, R.P., Snell, R.G., Wilkins, R.J., Park, S.H., Ram, P.A., Waxman, D.J. and Davey, H.W. (1997). Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl. Acad. Sci. U.S.A. 94, 7239–7244.

    Article  CAS  Google Scholar 

  • Uversky, V.N., Gillespie, J.R. and Fink, A.L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41, 415–427.

    Article  CAS  Google Scholar 

  • Valentine, C.R. (1998). The association of nonsense codons with exon skipping. Mutat. Res. 411, 87–117.

    Article  Google Scholar 

  • Verma, N. and Kansal V.K. (1995). Characterisation and starvation induced regulation of methionine uptake sites in mouse mammary gland. Indian J. Exp. Biol. 33, 516–530.

    CAS  Google Scholar 

  • Verma, N. and Kansal, V.K. (1993). Characterisation of the routes of methionine transport in mouse mammary glands. Indian J. Med. Res. [B] 98, 297–304.

    Google Scholar 

  • Vilotte J.L., Whitelaw, C.B.A., Ollivier-Bousquet, M. and Shennan, D.B. (2002). Biosynthesis of milk proteins, in, Advanced Dairy Chemistry 1, Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers. New York. pp.699–738.

    Google Scholar 

  • Vilotte, J.L. and Soulier, S. (1992). Isolation and characterization of the mouse alpha-lactalbumin-encoding gene: interspecies comparison, tissue- and stage-specific expression. Gene 119, 287–292.

    Article  CAS  Google Scholar 

  • Vilotte, J.L., Soulier, S. and Mercier, J.C. (1993). Complete sequence of a bovine alpha-lactalbumin pseudogene: the region homologous to the gene is flanked by two directly repeated LINE sequences. Genomics 16, 529–532.

    Article  CAS  Google Scholar 

  • Vilotte, J.L., Soulier, S., Mercier, J.C., Gaye, P., Hue-Delahaie, D. and Furet, J.P. (1987). Complete nucleotide sequence of bovine alpha-lactalbumin gene. Comparison with its rat counterpart. Biochimie 69, 609–620

    Article  CAS  Google Scholar 

  • Vilotte, J.L., Soulier, S., Printz, C. and Mercier, J.C. (1991). Sequence of the goat alpha-lactalbumin-encoding gene: comparison with the bovine gene and evidence of related sequences in the goat genome. Gene 98, 271–276

    Article  CAS  Google Scholar 

  • Vina, J., Puertes, I.R., Saez, G.T. and Vina, J.R. (1981). Role of prolactin in amino acid uptake by the lactating mammary gland of the rats. FEBS Lett. 126, 250–252.

    Article  CAS  Google Scholar 

  • Wang, C. and Li, Q. (2007). Identification of differentially expressed miRNA during the development of Chinese murine mammary gland. J. Genet. Genomics 34, 966–973.

    Article  CAS  Google Scholar 

  • Wang, C.C., Shi, H., Guo, K., Ng, C.P., Li, J., Gan, B.Q., Chien Liew, H., Leinonen, J., Rajaniemi, H., Zhou, Z.H., Zeng, Q. and Hong, W. (2007). VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol. Biol. Cell 18, 1056–1063

    Article  CAS  Google Scholar 

  • Wang S, Webb KE Jr, Akers MR. (1996) Peptide-bound methionine can be a source of methionine for the synthesis of secreted proteins by mammary tissue explants from lactating mice. J. Nutr. 126, 1662–1672.

    Article  CAS  Google Scholar 

  • Warner, B., Janssens, P. and Nicholas, K. (1993). Prolactin-independent induction of alpha-lactalbumin gene expression in mammary gland explants from pregnant Balb/C mice. Biophys. Biochem. Res. Commun. 194, 987–991.

    Article  CAS  Google Scholar 

  • Watson, C.J., Gordon, K.E., Robertson, M. and Clark, A.J. (1991). Interaction of DNA-binding proteins with a milk protein gene promoter in vitro: identification of a mammary gland-specific factor. Nucleic Acids Res. 19, 6603–6610.

    Article  CAS  Google Scholar 

  • Webster, J., Wallace, R.M., Clark, A.J. and Whitelaw, C.B.A. (1995). Tissue-specific, temporally regulated expression mediated by the proximal ovine beta-lactoglobulin promoter in transgenic mice. Cell. Mol. Biol. Res. 41, 11–15.

    CAS  Google Scholar 

  • West, D.W. and Clegg, R.A. (1984). Casein kinase activity in rat mammary gland Golgi vesicles. Demonstration of latency and requirement for a transmembrane ATP carrier. Biochem. J. 219, 181–187.

    CAS  Google Scholar 

  • Whitelaw C.B.A. (2000). Nucleosome organization of the beta-lactoglobulin gene. Transcription complex formation. Adv. Exp. Med. Biol. 480, 147–153

    Article  CAS  Google Scholar 

  • Whitelaw, C.B.A. and Webster, J. (1998). Temporal profiles of appearance of DNAse I hypersensitive sites associated with the ovine beta-lactoglobulin gene differ in sheep and transgenic mice. Mol. Gen. Genet. 257, 649–654.

    Article  CAS  Google Scholar 

  • Whitelaw, C.B.A., Harris, S., McClenaghan, M., Simons, J.P. and Clark, A.J. (1992). Position-independent expression of ovine beta-lactoglobulin in transgenic mice. Biochem. J. 286, 31–39.

    CAS  Google Scholar 

  • Winklehner-Jennewein, P., Geymayer, S., Lechner, J., Welte, T., Hansson, L., Geley, S. and Doppler, W. (1998). A distal enhancer region in the human beta-casein gene mediates the response to prolactin and glucocortocoid hormones. Gene 217, 127–139.

    Article  CAS  Google Scholar 

  • Witsell, D.L., Casey, C.E. and Neville, M.C. (1990). Divalent cation activation of galactosyl transferase in native mammary Golgi vesicles. J. Biol. Chem. 265, 15731–15737.

    CAS  Google Scholar 

  • Wolberger, C. (1998). Combinatorial transcription factors. Curr. Opin. Genet. Dev. 8, 552–559.

    Article  CAS  Google Scholar 

  • Wooding, F.B.P. (1977). Comparative mammary fine structure. Symp. Zool. Soc. Lond. 41, 1–41.

    CAS  Google Scholar 

  • Yoshimura, M. and Oka, T. (1989). Isolation and structural analysis of the mouse beta-casein gene. Gene 78, 267–275

    Article  CAS  Google Scholar 

  • Yu-Lee, L.Y., Richter-Mann, L., Couch, C.H., Stewart, A.F., MacKinlay, R.G. and Rosen, J.M. (1986). Evolution of the casein multigene family conserved sequences in the 5′ flanking and exon regions. Nucleic Acids Res. 14, 1883–1902

    Article  CAS  Google Scholar 

  • Martin, P. and Leroux, C. (1992) Exon-skipping is responsible for the 9 amino acid residue deletion occurring near the N-terminal of human β-casein. Biochem. Biophys. Res. Commun. 183, 750–757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vilotte, JL., Chanat, E., Le Provost, F., Whitelaw, C.B.A., Kolb, A., Shennan, D.B. (2013). Genetics and Biosynthesis of Milk Proteins. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_14

Download citation

Publish with us

Policies and ethics