Skip to main content

Origin and Evolution of the Major Constituents of Milk

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Accumulating evidence indicates that the evolutionary novelty known as milk, and its constituents, is of ancient origin, dating back 300+ million years. Milk may derive from the secretion of apocrine-like skin glands that produced water- and antimicrobial-rich fluids of benefit to attended eggs. The casein micelle evolved from much simpler secretory calcium-binding phosphoproteins. The milk fat globule evolved by co-opting membrane (butyrophilin), cytosol (xanthine oxidoreductase), and intracellular lipid droplet (adipophilin) proteins of secretory cells into new or expanded functions. Milk sugar secretion required structural and functional modification of a secreted antibacterial protein into a Golgi regulatory protein (α-lactalbumin). Other whey proteins (β-lactoglobulin, whey acidic protein) apparently lost prior functions in becoming nutrient sources for suckling young.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acher, R. (1996). Molecular evolution of fish neurohypophysial hormones: Neutral and selective evolutionary mechanisms. Gen. Comp. Endocrinol. 102, 157–172.

    Google Scholar 

  • Akers, R.M. (2002). Lactation and the Mammary Gland. Iowa State Press, Ames, Iowa.

    Google Scholar 

  • Åkerstrom, B., Borregaard, N., Flower, D.R. and Salier, J.-P. (2006). Lipocalins. Landes Bioscience, Georgetown, TX.

    Google Scholar 

  • Ali, M.F., Lips, K.R., Knoop, F.C., Fritzsch, B., Miller, C. and Conlon, J.M. (2002). Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. BBA-Proteins Proteom. 1601, 55–63.

    Google Scholar 

  • Andrechek, E.R., Mori, S., Rempel, R.E., Chang, J.T. and Nevins, J.R. (2008). Patterns of cell signaling pathway activation that characterize mammary development. Development. 135, 2403–2413.

    Google Scholar 

  • Arnould, J.P.Y. and Boyd, I.L. (1995). Temporal patterns of milk production in Antarctic fur seals (Arctocephalus gazella). J. Zool. 237, 1–12.

    Google Scholar 

  • Arnould, J.P.Y., Boyd, I.L. and Socha, D.G. (1996). Milk consumption and growth efficiency in Antarctic fur seal (Arctocephalus gazella) pups. Can. J. Zool. 74, 254–266.

    Google Scholar 

  • Auműller, G., Wilhelm, B. and Seitz, J. (1999). Apocrine secretion - fact or artifact? Ann. Anat. 181, 437–446.

    Google Scholar 

  • Beck, G. and Habicht, G.S. (1996). Immunity and the invertebrates. Sci. Am. 275, 60–3, 66.

    Google Scholar 

  • Bingle, C.D. and Vyakarnam, A. (2008). Novel innate immune functions of the whey acidic protein family. Trends Immunol. 29, 444–453.

    Google Scholar 

  • Bingle, L., Cross, S.S., High, A.S., Wallace, W.A., Rassl, D., Yuan, G., Hellstrom, I., Campos, M.A. and Bingle, C.D. (2006). WFDC2 (HE4): a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Resp. Res. 7, 61–70.

    Google Scholar 

  • Blackburn, D. (1991). Evolutionary origins of the mammary gland. Mammal Rev. 21, 81–96.

    Google Scholar 

  • Brasaemle, D.L. (2007). The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 48, 2547–59.

    Google Scholar 

  • Brawand, D., Wahli, W. and Kaessmann, H. (2008). Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biology 6, e63–e63.

    Google Scholar 

  • Bresslau, E. (1912). Die Entwickelung des Mammara­pparates der Monotremen, Marsupialier und einiger Placentalier. III. Entwickelung des Mammarapparates der Marsupialier, Insectivoren, Nagatheire, Carnivoren und Widerkäuer. Jenaische Denkschr. 7, 647–874, plates 37–46.

    Google Scholar 

  • Bresslau, E. (1920). The Mammary Apparatus of the Mammals in Light of Ontogenesis and Phylogenesis. Methuen, London, UK.

    Google Scholar 

  • Brew, K. (2003). α-Lactalbumin, in, Advanced Dairy Chemistry - I. Proteins. Part A, P.F. Fox and P.L.H. McSweeney eds., Vol. 1, Kluver Academic, New York, NY. pp. 387–419.

    Google Scholar 

  • Burns, R.A. and Milner, J.A. (1981). Sulfur amino acid requirements of immature Beagle dogs. J. Nutr. 111, 2117–24.

    Google Scholar 

  • Callewaert, L. and Michiels, C.W. (2010). Lysozymes in the animal kingdom. J. Biosciences 35, 127–160.

    Google Scholar 

  • Carroll R.L. (1969). A Middle Pennsylvanian captorhinomorph, and the interrelationships of primitive reptiles. J. Paleontol. 43,151–170.

    Google Scholar 

  • Carroll, R.L. (1970). The earliest known reptiles. Yale Sci. Mag. 1970, 16–23.

    Google Scholar 

  • Carroll, R.L. (2009). The Rise of Amphibians. 365 Million Years of Evolution.Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Cavaggioni, A., Pelosi, P., Edwards, S. and Sawyer, L. (2006). Functional aspects of β-lactoglobulin, major urinary protein and odorant-binding protein, in, Lipocalins, B. Åkerstrom, N. Borregaard, D.R. Flower and J.-P. Salier eds., Landes Bioscience, Georgetown, TX. pp. 131–139.

    Google Scholar 

  • Chudinov, P. (1968). Structure of the integuments of thermomorphs. Dokl. Acad. Sci. U.S.S.R Earth Sci. Sect. 179, 226–229.

    Google Scholar 

  • Clare, D.A. and Swaisgood, H.E. (2000). Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187–95.

    Google Scholar 

  • Clarke, B. (1997). The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. 72, 365–379.

    Google Scholar 

  • Colbert, E. (1948). The mammal-like reptile Lycaenops. B. Am. Mus. Nat. Hist. 89, 353–404.

    Google Scholar 

  • Crisp, E.A., Cowan, P.E. and Messer, M. (1989a). Changes in milk carbohydrates during lactation in the common brushtail possum, Trichosurus vulpecula(Marsupialia:Phalangeridae). Reprod. Fert. Develop. 1, 309–14.

    Google Scholar 

  • Crisp, E.A., Messer, M. and Cowan, P.E. (1989b). Intestinal lactase (beta-galactosidase) and other disaccharidase activities of suckling and adult common brushtail possums, Trichosurus vulpecula(Marsupialia: Phalangeridae). Reprod. Fert. Develop. 1, 315–24.

    Google Scholar 

  • Currie, P. (1977). A new haptodontine sphenacodont (Reptilia: Pelycosauria) from the Upper Pennsylvanian of North America. J. Paleontol. 51, 927–942.

    Google Scholar 

  • Dacheux, J.-L., Castella, S., Gatti, J.L. and Dacheux, F.O. (2005). Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology 63, 319–41.

    Google Scholar 

  • Darwin, C. (1872). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle of Life, 6th edn., John Murray, London, UK.

    Google Scholar 

  • Demmer, J., Ross, I.K., Ginger, M.R., Piotte, C.K. and Grigor, M.R. (1998). Differential expression of milk protein genes during lactation in the common brushtail possum (Trichosurus vulpecula). J. Mol. Endocrinol. 20, 37–44.

    Google Scholar 

  • Demmer, J., Stasiuk, S.J., Grigor, M.R., Simpson, K.J. and Nicholas, K.R. (2001). Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). BBA-Gene Struct. Expr. 1522, 187–194.

    Google Scholar 

  • Dhouailly, D. (2009). A new scenario for the evolutionary origin of hair, feather, and avian scales. J. Anat. 214, 587–606.

    Google Scholar 

  • Duellman, W. and Trueb, L. (1994). Biology of Amphibians. Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Ecay, T.W., Stewart, J.R. and Blackburn, D.G. (2004). Expression of calbindin-D28K by yolk sac and chorioallantoic membranes of the corn snake, Elaphe guttata. J. Exp. Zool. Part B 302, 517–25.

    Google Scholar 

  • Enroth, C., Eger, B.T., Okamoto, K., Nishino, T. and Pai, E.F. (2000). Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 97, 10723–8.

    Google Scholar 

  • Feldman, M. (2007). Some options to induce oviposition in turtles. Chelonian Conserv. Biol. 6, 313–320.

    Google Scholar 

  • Finn, C.A. (1998). Menstruation: a nonadaptive consequence of uterine evolution. Q. Rev. Biol. 73, 163–173.

    Google Scholar 

  • Finn, R.N. (2007). Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins. Biol. Reprod. 76, 926–35.

    Google Scholar 

  • Flower, D.R. (1996). The lipocalin protein family: structure and function. Biochem. J. 318( Pt 1), 1–14.

    Google Scholar 

  • Foldager, J., Huber, J.T. and Bergen, W.G. (1977). Methionine and sulfur amino acid requirement in the preruminant calf. J. Dairy Sci. 60, 1095–104.

    Google Scholar 

  • Fomon, S.J., Ziegler, E.E., Nelson, S.E. and Edwards, B.B. (1986). Requirement for sulfur-containing amino acids in infancy. J. Nutr. 116, 1405–22.

    Google Scholar 

  • Fox, P. (2003). Milk proteins: general and historical aspects, in, Advanced Dairy Chemistry - I. Proteins. Part A, P. Fox and P. McSweeney eds., Vol. 1, Kluwer Academic, New York, NY. pp. 1–48.

    Google Scholar 

  • Frolich, L. (1997). The role of the skin in the origin of amniotes: Permeability barriers, protective covering and mechanical support, in, Amniote Origins. Completing the Transition to Land, S.S. Sumida and K.L.M. Martin eds., Academic Press, San Diego, CA. pp. 327–352.

    Google Scholar 

  • Fry, B.G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S.F.R., Vidal, N., Poelmann, R.E. and Norman, J.A. (2008). Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics 7, 215–246.

    Google Scholar 

  • Fujita, T. (2002). Evolution of the lectin-complement pathway and its role in innate immunity. Nat. Rev. Immunol. 2, 346–353.

    Google Scholar 

  • Fuller, M.F., McWilliam, R., Wang, T.C. and Giles, L.R. (1989). The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. Brit. J. Nutr. 62, 255–267.

    Google Scholar 

  • Ganfornina, M.D., Gutierrez, G., Bastiani, M. and Sanchez, D. (2000). A phylogenetic analysis of the lipocalin protein family. Mol. Biol. Evol. 17, 114–126.

    Google Scholar 

  • Ganfornina, M.D., Sanchez, D., Greene, L.H. and Flower, D.R. (2006). The Lipocalin protein family: Protein sequence, structure and relationship to the calycin superfamily, in, Lipocalins, B. Åkerstrom, N. Borregaard, D.R. Flower and J.-P. Salier eds., Landes Bioscience, Georgetown, TX. pp. 17–27.

    Google Scholar 

  • Garattini, E., Mendel, R., Romão, M.J., Wright, R. and Terao, M. (2003). Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem. J. 372, 15–32.

    Google Scholar 

  • Gegenbauer, C. (1886). Zur Kenntniss der Mammarorgane der Monotremen.W. Engelmann, Leipzig, Germany.

    Google Scholar 

  • Gesase, A.P. and Satoh, Y. (2003). Apocrine secretory mechanism: recent findings and unresolved problems. Histol. Histopathol. 18, 597–608.

    Google Scholar 

  • Ginger, M.R. and Grigor, M.R. (1999). Comparative aspects of milk caseins. Comp. Biochem. Physiol. B 124, 133–145.

    Google Scholar 

  • Goto, K., Fukuda, K., Senda, A., Saito, T., Kimura, K., Glander, K.E., Hinde, K., Dittus, W., Milligan, L.a., Power, M.L., Oftedal, O.T. and Urashima, T. (2010). Chemical characterization of oligosaccharides in the milk of six species of New and Old World monkeys. Glycoconj. J. 27, 703–715.

    Google Scholar 

  • Griffiths, M. (1978). Biology of the Monotremes. Academic Press, New York, NY.

    Google Scholar 

  • Griffiths, M., Elliott, M.A., Leckie, R.M.C. and Schoefl, G.I. (1973). Observations of the comparative anatomy and ultrastructure of mammary glands and on the fatty acids of the triglycerides in platypus and echidna milk fats. J. Zool. 169, 255–279.

    Google Scholar 

  • Grigor, M.R., Bennett, B.L., Carne, A. and Cowan, P.E. (1991). Whey proteins of the common brushtail possum (Trichosurus vulpecula): isolation, characterization and changes in concentration in milk during lactation of transferrin, α-lactalbumin and serum albumin. Comp. Biochem. Physiol. B 98, 451–459.

    Google Scholar 

  • Gritli-Linde, A., Hallberg, K., Harfe, B.D., Reyahi, A., Kannius-Janson, M., Nilsson, J., Cobourne, M.T., Sharpe, P.T., McMahon, A.P. and Linde, A. (2007). Abnormal hair development and apparent follicular transformation to mammary gland in the absence of hedgehog signaling. Dev. Cell 12, 99–112.

    Google Scholar 

  • Hagiwara, K., Kikuchi, T., Endo, Y., Huqun, Usui, K., Takahashi, M., Shibata, N., Kusakabe, T., Xin, H., Hoshi, S., Miki, M., Inooka, N., Tokue, Y. and Nukiwa, T. (2003). Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J. Immunol. 170, 1973–1979.

    Google Scholar 

  • Hajjoubi, S., Rival-Gervier, S., Hayes, H., Floriot, S., Eggen, A., Piumi, F., Chardon, P., Houdebine, L.M. and Thepot, D. (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104–112.

    Google Scholar 

  • Hall, A.J., Masel, A., Bell, K., Halliday, J.A., Shaw, D.C. and VandeBerg, J.L. (2001). Characterization of baboon (Papio hamadryas) milk proteins. Biochem. Genet. 39, 59–71.

    Google Scholar 

  • Hatsell, S.J. and Cowin, P. (2006). Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133, 3661–3670.

    Google Scholar 

  • Hayssen, V. and Blackburn, D.G. (1985) α-Lactalbumin and the origins of lactation. Evolution 39, 1147–1149.

    Google Scholar 

  • Hiemstra, P.S. (2002). Novel roles of protease inhibitors in infection and inflammation. Biochem. Soc. Trans. 30, 116–120.

    Google Scholar 

  • Hill, J. (1949). Development of the Monotremata. Part VII. The development and structure of the egg-tooth and the caruncle in the monotremes and the occurrence of vestiges of the egg-tooth in marsupials. Trans. Roy. Soc. Lond. 26, 503–544.

    Google Scholar 

  • Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. and Ezekowitz, R.A. (1999). Phylogenetic perspectives in innate immunity. Science 284, 1313–1318.

    Google Scholar 

  • Holt, C. and Carver, J.A. (2012). Darwinian transformation of a ‘scarcely nutritious fluid’ into milk. J. Evol. Biol. 25, 1253–1263.

    Google Scholar 

  • Hopson, J.A. (1973). Endothermy, small size and the origin of mammalian reproduction. Am. Nat. 107, 446–452.

    Google Scholar 

  • Hurle, B., Swanson, W. and Green, E.D. (2007). Comparative sequence analyses reveal rapid and divergent evolutionary changes of the WFDC locus in the primate lineage. Genom. Res. 17, 276–286.

    Google Scholar 

  • Jenkins, F. (1984). A survey of mammalian origins, in, Mammals, Notes for a Short Course, P. Gingerich and C. Badgley eds., Vol. 8, University of Tennessee Studies in Geology. pp. 32–47.

    Google Scholar 

  • Jenkins, F.A. and Parrington, F.R. (1976). The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Phil. Trans. Roy. Soc. Lond. B 273, 387–431.

    Google Scholar 

  • Jenssen, H., Hamill, P. and Hancock, R.E.W. (2006). Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.

    Google Scholar 

  • Jeong, J., Rao, A.U., Xu, J., Ogg, S.L., Hathout, Y., Fenselau, C. and Mather, I.H. (2009). The PRY/SPRY/B30. 2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase. J. Biol. Chem. 284, 22444–22456.

    Google Scholar 

  • Jia, Y., Sun, Y., Wang, Z., Wang, Q., Wang, X., Zhao, X. and Wang, J. (2008). A single whey acidic protein domain (SWD)-containing peptide from fleshy prawn with antimicrobial and proteinase inhibitory activities. Aquaculture 284, 246–259.

    Google Scholar 

  • Jolles, P., Loucheux-Lefebre, M.-H. and Henschen, A. (1978). Structural relatedness of κ-casein and fibrinogen γ-chain. J. Mol. Evol. 11, 271–277.

    Google Scholar 

  • Kawada, T., Kanda, A., Minakata, H., Matsushima, O. and Satake, H. (2004). Identification of a novel receptor for an invertebrate oxytocin/vasopressin superfamily peptide: molecular and functional evolution of the oxytocin/vasopressin superfamily. Biochem. J. 382, 231–237.

    Google Scholar 

  • Kawasaki, K. (2009). The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev. Genes Evol. 219, 147–157.

    Google Scholar 

  • Kawasaki, K. and Weiss, K.M. (2003). Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc. Natl. Acad. Sci. USA 100, 4060–4065.

    Google Scholar 

  • Kawasaki, K. and Weiss, K.M. (2006). Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. J. Exp. Zool. Part B 306B, 295–316.

    Google Scholar 

  • Kawasaki, K., Lafont, A. and Sire, J. (2011). The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol. 28, 2053–2061.

    Google Scholar 

  • Kemp, T.S. (2005). The Origin and Evolution of Mammals. Oxford University Press, New York, NY.

    Google Scholar 

  • Kingdon, J. (1974). East African Mammals. An Atlas of Evolution in Africa. Volume II. Part A. (Insectivores and Bats). University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Kontopidis, G., Holt, C. and Sawyer, L. (2004). Invited review: β-lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87, 785–796.

    Google Scholar 

  • Konuma, T., Sakurai, K. and Goto, Y. (2007). Promiscuous binding of ligands by β-lactoglobulin involves hydrophobic interactions and plasticity J. Mol. Biol. 368, 209–218.

    Google Scholar 

  • Kunert-Keil, C., Wiehmeier, E., Jeschke, U. and Giebel, J.r. (2005). Immunolocalization of glycodelin in the genital tract of rats. J. Mol. Histol. 36, 111–117.

    Google Scholar 

  • Kupfer, A., Nabhitabhata, J. and Himstedt, W. (2004). Reproductive ecology of female caecilian amphibians (genus Ichthyophis): a baseline study. Biol. J. Linn. Soc. 83, 207–217.

    Google Scholar 

  • Kupfer, A., Müller, H., Antoniazzi, M.M., Jared, C., Greven, H., Nussbaum, R.A. and Wilkinson, M. (2006). Parental investment by skin feeding in a caecilian amphibian. Nature 440, 926–929.

    Google Scholar 

  • Lefevre, C.M., Sharp, J.A. and Nicholas, K.R. (2009). Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod. Fert. Develop. 21, 1015–1027.

    Google Scholar 

  • Lefevre, C.M., Sharp, J.A. and Nicholas, K.R. (2010). Evolution of lactation: ancient origin and extreme adaptations of the lactation system. Annu. Rev. Genom. Hum. G. 11, 219–238.

    Google Scholar 

  • Lemay, D.G., Lynn, D.J., Martin, W.F., Neville, M.C., Casey, T.M., Rincon, G., Kriventseva, E.V., Barris, W.C., Hinrichs, A.S., Molenaar, A.J., Pollard, K.S., Maqbool, N.J., Singh, K., Murney, R., Zdobnov, E.M., Tellam, R.L., Medrano, J.F., German, J.B. and Rijnkels, M. (2009). The bovine lactation genome: insights into the evolution of mammalian milk. Genom. Biol. 10, R43-R43.

    Google Scholar 

  • Lillywhite, H.B. (2006). Water relations of tetrapod integument. J. Exp. Biol. 209, 202–226.

    Google Scholar 

  • Lillywhite, H.B., Mittal, A.K., Garg, T.K. and Agrawal, N. (1997). Integumentary structure and its relationship to wiping behaviour in the common Indian tree frog, Polypedates maculatus. J. Zool. 243, 675–687.

    Google Scholar 

  • Lönnerdal, B. and Atkinson, S. (1995). Nitrogenous components of milk. A. Human milk proteins, in, Handbook of Milk Composition, R. Jensen ed., Academic Press, San Diego, CA. pp. 351–368.

    Google Scholar 

  • Lowe, J.B. and Varki, A. (1999). Glycosyltransferases, in, Essentials of Glycobiology, A. Varki, R. Cummings, J. Esko, H. Freeze, G. Hart and J. Marth, eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 253–266.

    Google Scholar 

  • Luckett, W. (1977). Ontogeny of amniote fetal membranes and their application to phylogeny, in, Major Patterns in Vertebrate Evolution, M. Hecht, P. Goody and B. Hecht eds., Plenum, New York, NY.pp. 439–516.

    Google Scholar 

  • Luo, Z.-X. and Wible, J.R. (2005). A late Jurassic digging mammal and early mammalian diversification. Science 308, 103–107.

    Google Scholar 

  • Luo, Z.X., Crompton, A.W. and Sun, A.L. (2001). A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292, 1535–1540.

    Google Scholar 

  • Martin, H.M., Hancock, J.T., Salisbury, V. and Harrison, R. (2004). Role of xanthine oxidoreductase as an antimicrobial agent. Infect. Immun. 72, 4933–4939.

    Google Scholar 

  • Mather, I.H. (2011a). Milk fat globule membrane, in, Encyclopedia of Dairy Sciences, J. Fuquay, P. Fox and P. McSweeney eds., Vol. 3, Academic Press, San Diego.pp. 680–690.

    Google Scholar 

  • Mather, I.H. (2011b). Secretion of milk constituents, in, Encyclopedia of Dairy Sciences, J. Fuquay, P. Fox and P. McSweeney eds., Vol. 3, Academic Press, San Diego. pp. 373–380.

    Google Scholar 

  • Mather, I.H. and Keenan, T.W. (1998). Origin and secretion of milk lipids. J. Mammary Gland Biol. 3, 259–273.

    Google Scholar 

  • Mayer, J.A., Foley, J., De La Cruz, D., Chuong, C.-M. and Widelitz, R. (2008). Conversion of the nipple to hair-bearing epithelia by lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface. Am. J. Pathol. 173, 1339–1348.

    Google Scholar 

  • McClellan, H.L., Miller, S.J. and Hartmann, P.E. (2008). Evolution of lactation: nutrition v. protection with special reference to five mammalian species. Nutr. Res. Rev. 21, 97–116.

    Google Scholar 

  • McManaman, J.L. (2009). Formation of milk lipids: a molecular perspective. Clin. Lipidol. 4, 391–401.

    Google Scholar 

  • McManaman, J.L., Palmer, C.a., Wright, R.M. and Neville, M.C. (2002). Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J. Physiol. 545, 567–579.

    Google Scholar 

  • McManaman, J.L., Reyland, M.E. and Thrower, E.C. (2006). Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J. Mammary Gland Biol. 11, 249–268.

    Google Scholar 

  • Messer, M. and Urashima, T. (2002). Evolution of milk oligosaccharides and lactose. Trends Glycosci. Glyc. 14, 153–176.

    Google Scholar 

  • Metka, K. and Nada, P. (1992). The role of exocytosis in the apocrine secretion of milk lipid globules in mouse mammary gland during lactogenesis. Biol. Cell 75, 211–216.

    Google Scholar 

  • Miura, S., Gan, J.-W., Brzostowski, J., Parisi, M.J., Schultz, C.J., Londos, C., Oliver, B. and Kimmel, A.R. (2002). Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem. 277, 32253–32257.

    Google Scholar 

  • Montagna, W. (1962). The Structure and Function of Skin, 2nd edn., Academic Press, New York, NY.

    Google Scholar 

  • Montagna, W. and Parakkal, P. (1974). The Structure and Function of Skin, 3rd edn., Academic Press, New York, NY.

    Google Scholar 

  • Mover, H., Ar, A. and Hellwing, S. (1985). Energetic costs of lactation with and without simultaneous pregnancy in the white-toothed shrew Crocidura russula monacha. Physiol. Zool. 62, 919–936.

    Google Scholar 

  • Nair, D.G., Fry, B.G., Alewood, P., Kumar, P.P. and Kini, R.M. (2007). Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem. J. 402, 93–104.

    Google Scholar 

  • National Research Council (1995). Nutrient Requirements of Laboratory Animals, 4th edn., National Academy Press, Washington, DC.

    Google Scholar 

  • Nelson, C.M. and Bissell, M.J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Ann. Rev. Cell Dev. Biol. 22, 287–309.

    Google Scholar 

  • Newburg, D.S. (1996). Oligosaccharides and glycoconjugates in human milk: Their role in host defense. J. Mammary Gland Biol. 1, 271–283.

    Google Scholar 

  • Nicholas, K.R., Messer, M., Elliott, C., Maher, F. and Shaw, D.C. (1987). A novel whey protein synthesized only in late lactation by the mammary gland from the tammar (Macropus eugenii). Biochem. J. 241, 899–904.

    Google Scholar 

  • Nishino, T., Okamoto, K., Eger, B.T., Pai, E.F. and Nishino, T. (2008). Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. The FEBS Journal 275, 3278–3289.

    Google Scholar 

  • Oftedal, O.T. (1984). Milk composition, milk yield and energy output at peak lactation: A comparative review. Symp. Zool. S. London 51, 33–85.

    Google Scholar 

  • Oftedal, O.T. (1985). Pregnancy and lactation, in, Bioenergetics of Wild Herbivores, R.J. Hudson and R.G. White eds., CRC Press, Inc., Boca Raton, LA. pp. 215–238.

    Google Scholar 

  • Oftedal, O.T. (1993). The adaptation of milk secretion to the constraints of fasting in bears, seals and baleen whales. J. Dairy Sci. 76, 3234–3246.

    Google Scholar 

  • Oftedal, O.T. (1997). Lactation in whales and dolphins: evidence of divergence between baleen- and toothed-species. J. Mammary Gland Biol. 2, 205–230.

    Google Scholar 

  • Oftedal, O.T. (2000). Use of maternal reserves as a lactation strategy in large mammals. Proc. Nutr. Soc. 59, 99–106.

    Google Scholar 

  • Oftedal, O.T. (2002a). The mammary gland and its origin during synapsid evolution. J. Mammary Gland Biol. 7, 225–252.

    Google Scholar 

  • Oftedal, O.T. (2002b). The origin of lactation as a water source for parchment-shelled eggs. J. Mammary Gland Biol. 7, 253–266.

    Google Scholar 

  • Oftedal, O.T. (2011). Milk of marine mammals, in, Encyclopedia of Dairy Sciences, J. Fuquay, P. Fox and P. McSweeney eds., Vol. 3, Academic Press, San Diego, CA. pp. 563–580.

    Google Scholar 

  • Oftedal, O.T. (2012). The evolution of milk secretion and its ancient origins. Animal 6, 355–368.

    Google Scholar 

  • Oftedal, O.T. and Iverson, S.J. (1995). Comparative analysis of non-human milks. A. Phylogenetic variation in the gross composition of milks, in, Handbook of Milk Composition, R.G. Jensen ed., Academic Press, San Diego, CA. pp. 749–789.

    Google Scholar 

  • Oftedal, O.T., Boness, D.J. and Tedman, R.A. (1987a). The behavior, physiology, and anatomy of lactation in the Pinnipedia, in, Current Mammalogy, Vol. 1, H. Genoways, ed., Plenum Press, New York. pp. 175–245.

    Google Scholar 

  • Oftedal, O.T., Iverson, S.J. and Boness, D.J. (1987b). Milk and energy intakes of suckling California sea lion Zalophus californianuspups in relation to sex, growth, and predicted maintenance requirements. Physiol. Zool. 60, 560–575.

    Google Scholar 

  • Oftedal, O.T., Bowen, D.W. and Boness, D.J. (1993). Energy transfer by lactating hooded seals and nutrient deposition in their pups during the 4 days from birth to weaning. Physiol. Zool. 66, 412–436.

    Google Scholar 

  • Ogg, S.L., Weldon, A.K., Dobbie, L., Smith, A.J.H. and Mather, I.H. (2004). Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc. Natl. Acad. Sci. USA 101, 10084–10089.

    Google Scholar 

  • Packard, M.J. and Clark, N. (1996). Aspects of calcium regulation in embyonic lepidosaurians and chelonians and a review of calcium regulation in embryonic archosaurians. Physiol. Zool. 69, 435–466.

    Google Scholar 

  • Packard, G. and Packard, M.J. (1988). The physiological ecology of reptilian eggs and embryos, in, Biology of the Reptilia, Vol. 16B, Defense and Life History, C. Gans and R. Huey eds., Alan R. Liss, New York, NY. pp. 523–605.

    Google Scholar 

  • Packard, M.J. and Seymour, R.S. (1997). Evolution of the amniote egg, in, Amniote Origins: Completing the Transition to Land, S.S. Sumida and K.L.M. Martin eds., Academic Press, San Diego, CA. pp. 265–290.

    Google Scholar 

  • Parry, L. and Bathgate, R.A.D. (2000). The role of oxytocin and regulation of uterine oxytocin receptors in pregnant marsupials. Exp. Physiol. 85S, 91S–99S.

    Google Scholar 

  • Perez, M.D. and Calvo, M. (1995). Interaction of b-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J. Dairy Sci. 78, 978–988.

    Google Scholar 

  • Pervaiz, S. and Brew, K. (1985). Homology of β-lactoglobulin, serum retinol-binding protein, and protein HC. Science 228, 335–337.

    Google Scholar 

  • Piotte, C.P. and Grigor, M.R. (1996). A novel marsupial protein expressed by the mammary gland only during the early lactation and related to the Kunitz proteinase inhibitors. Arch. Biochem. Biophys. 330, 59–64.

    Google Scholar 

  • Piotte, C.P., Hunter, A.K., Marshall, C.J. and Grigor, M.R. (1998). Phylogenetic analysis of three lipocalin-like proteins present in the milk of Trichosurus vulpecula(Phalangeridae, Marsupialia). J. Mol. Evol. 46, 361–369.

    Google Scholar 

  • Prager, E.M. and Wilson, A.C. (1988). Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J. Mol. Evol. 27, 326–335.

    Google Scholar 

  • Qasba, P.K. and Kumar, S. (1997). Molecular divergence of lysozymes and α-lactalbumin. Crit. Rev. Biochem. Mol. 32, 255–306.

    Google Scholar 

  • Quagliata, S., Malentacchi C., Delfino C., Brunasso A. M. G., Delfino G. (2006). Adaptive evolution of secretory cell lines in vertebrate skin. Caryologia 59, 187–206.

    Google Scholar 

  • Ramakrishnan, B. and Qasba, P.K. (2001). Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the β-1,4-galactosyltransferase-I. J. Mol. Biol. 310, 205–218.

    Google Scholar 

  • Ramakrishnan, B. and Qasba, P.K. (2007). Role of a single amino acid in the evolution of glycans of invertebrates and vertebrates. J. Mol. Biol. 365, 570–576.

    Google Scholar 

  • Ramakrishnan, B., Balaji, P.V. and Qasba, P.K. (2002). Crystal structure of β1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 318, 491–502.

    Google Scholar 

  • Ramirez-Pinilla, M.P. (2006). Placental transfer of nutrients during gestation in an Andean population of the highly matrotrophic lizard genus Mabuya(Squamata: Scincidae). Herpetol. Monogr. 20, 194–204.

    Google Scholar 

  • Ranganathan, S., Simpson, K.J., Shaw, D.C. and Nicholas, K.R. (1999). The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J. Mol. Graph Model 17, 106–113, 134–136.

    Google Scholar 

  • Reeves, P.G., Nielsen, F.H. and Fahey, G.C. (1993). AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.

    Google Scholar 

  • Reich, C. and Arnould, J. (2007). Evolution of Pinnipedia lactation strategies: A potential role for α-lactalbumin? Biol. Letters 3, 546–549.

    Google Scholar 

  • Rhodes, D.a., Stammers, M., Malcherek, G., Beck, S. and Trowsdale, J. (2001). The cluster of BTN genes in the extended major histocompatibility complex. Genomics 71, 351–362.

    Google Scholar 

  • Riek, A. (2011). Allometry of milk intake at peak lactation. Mamm. Biol. 76, 3–11.

    Google Scholar 

  • Rijnkels, M. (2002). Multispecies comparison of the casein gene loci and evolution of casein gene family. J. Mamm. Gland Biol. 7, 327–345.

    Google Scholar 

  • Rijnkels, M. (2003). Multispecies comparative analysis of a mammalian-specific genomic domain encoding secretory proteins. Genomics 82, 417–432.

    Google Scholar 

  • Russell, T.D., Palmer, C.a., Orlicky, D.J., Fischer, A., Rudolph, M.C., Neville, M.C. and McManaman, J.L. (2007). Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J. Lipid Res. 48, 1463–1475.

    Google Scholar 

  • Sanchez, D., Ganfornina, M.D., Gutierrez, G. and Marin, A. (2003). Exon-intron structure and evolution of the Lipocalin gene family. Mol. Biol. Evol. 20, 775–783.

    Google Scholar 

  • Sanchez, D., Ganfornina, M.D., Gutierrez, G., Gauthier-Jauneau, A.-C., Risler, J.-L. and Salier, J.-P. (2006). Lipocalin genes and their evolutionary history, in, Lipocalins, B. Åkerstrom, N. Borregaard, D.R. Flower and J.-P. Salier eds., Landes Bioscience, Georgetown, TX. pp. 5–16.

    Google Scholar 

  • Sarasin, P. and Sarasin, F. (1887–1890). Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon in den Jahren 1884–1886. 2. Band, 4. Heft, Zur Entwicklungsgeschichte und Anatomie der Ceylonesischen Blindwűhle Ichthyophis glutinosus, L., C.W. Kreidels Verlag, Wiesbaden, Germany.

    Google Scholar 

  • Sawyer, L. (2003). β-Lactoglobulin, in, Advanced Dairy Chemistry - I. Proteins. Part A, P. Fox and P. McSweeney eds., Vol. 1, Kluwer Academic, New York, NY. pp. 319–386.

    Google Scholar 

  • Schulz, T.M. and Bowen, W.D. (2005). The evolution of lactation strategies in pinnipeds: A phylogenetic analysis. Ecol. Monogr. 75, 159–177.

    Google Scholar 

  • Senda, A., Hatakeyama, E., Kobayashi, R., Fukuda, K., Uemura, Y., Saito, T., Packer, C., Oftedal, O.T. and Urashima, T. (2010). Chemical characterization of milk oligosaccharides of an African lion (Panthera leo) and a clouded leopard (Neofelis nebulosa). Anim. Sci. J. 81, 687–693.

    Google Scholar 

  • Seppälä, M. (2002). Glycodelin: A major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocr. Rev. 23, 401–430.

    Google Scholar 

  • Seppälä, M., Koistinen, H., Koistinen, R., Chiu, P.C. and Yeung, W.S.B. (2006). Glycodelin: A lipocalin with diverse glycoform-dependent actions, in, Lipocalins, B. Åkerstrom, N. Borregaard, D.R. Flower and J.-P. Salier eds., Landes Bioscience, Georgetown, TX. pp. 121–130.

    Google Scholar 

  • Seppälä, M., Koistinen, H., Koistinen, R., Chiu, P.C.N. and Yeung, W.S.B. (2007). Glycosylation related actions of glycodelin: gamete, cumulus cell, immune cell and clinical associations. Hum. Reprod. Update 13, 275–287.

    Google Scholar 

  • Seppälä, M., Koistinen, H., Koistinen, R., Hautala, L., Chiu, P.C. and Yeung, W.S. (2009). Glycodelin in reproductive endocrinology and hormone-related cancer. Eur. J. Endocrinol. 160, 121–133.

    Google Scholar 

  • Shaper, N.L., Charron, M., Lo, N.W. and Shaper, J.H. (1998). β-1,4-galactosyltransferase and lactose biosynthesis: recruitment of a housekeeping gene from the nonmammalian vertebrate gene pool for a mammary gland specific function. J. Mammary Gland Biol. 3, 315–324.

    Google Scholar 

  • Sharp, J.A., Cane, K.N., Lefevre, C., Arnould, J.P.Y. and Nicholas, K.R. (2005). Fur seal adaptations to lactation: insights into mammary gland function. Curr. Top. Dev. Biol. 72, 275–308.

    Google Scholar 

  • Sharp, J.A., Lefevre, C. and Nicholas, K.R. (2007). Molecular evolution of monotreme and marsupial whey acidic protein genes. Evol. Dev. 9, 378–392.

    Google Scholar 

  • Sharp, J.A., Lefevre, C. and Nicholas, K.R. (2008). Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biology 6, 48–48.

    Google Scholar 

  • Shennan, D.B. and Peaker, M. (2000). Transport of milk constituents by the mammary gland. Physiol. Rev. 80, 925–951.

    Google Scholar 

  • Sidor, C.A. and Hopson, J.A. (1998). Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology 24, 254–273.

    Google Scholar 

  • Simpson, K.J., Ranganathan, S., Fisher, J.A., Janssens, P.A., Shaw, D.C. and Nicholas, K.R. (2000). The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J. Biol. Chem. 275, 23074–23081.

    Google Scholar 

  • Smith, I.A., Knezevic, B.R., Ammann, J.U., Rhodes, D.A., Aw, D., Palmer, D.B., Mather, I.H. and Trowsdale, J. (2010a). BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J. Immunol. 184, 3514–3525.

    Google Scholar 

  • Smith, V.J., Desbois, A.P. and Dyrynda, E.A. (2010b). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 8, 1213–1262.

    Google Scholar 

  • Smolenski, G., Haines, S., Fiona, Y.S.K., Bond, J., Farr, V., Davis, S.R., Stelwagen, K. and Wheeler, T.T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. J. Proteome Res. 6, 207–215.

    Google Scholar 

  • Smyth, E., Clegg, R.A. and Holt, C. (2004). A biological perspective on the structure and function of caseins and casein micelles. Int. J. Dairy Technol. 57, 121–126.

    Google Scholar 

  • Stacey, A., Schnieke, A., Kerr, M., Scott, A., McKee, C., Cottingham, I., Binas, B., Wilde, C. and Colman, A. (1995). Lactation is disrupted by α-lactalbumin deficiency and can be restored by human α-lactalbumin gene replacement in mice. Proc. Natl. Acad. Sci. USA 92, 2835–2839.

    Google Scholar 

  • Starck, J.M. and Ricklefs, R. (1998). Avian Growth and Development: Evolution within the Altricial-Precocial Spectrum. Oxford University Press, New York, NY.

    Google Scholar 

  • Stewart, J.R. (1997). Morphology and evolution of the egg of oviparious amniotes, in, Amniote Origins: Completing the Transition to Land, S.S. Sumida and K.L.M. Martin eds., Academic Press, San Diego, CA. pp. 291–326.

    Google Scholar 

  • Stewart, J.R. and Ecay, T.W. (2010). Patterns of maternal provision and embryonic mobilization of calcium in oviparous and viviparous squamate reptiles. Herpetol. Conserv. Biol. 5, 341–359.

    Google Scholar 

  • Stinnakre, M.G., Vilotte, J.L., Soulier, S. and Mercier, J.C. (1994). Creation and phenotypic analysis of α-lactalbumin-deficient mice. Proc. Natl. Acad. Sci. USA 91, 6544–6548.

    Google Scholar 

  • Stoeckelhuber, M., Stoeckelhuber, B.M. and Welsch, U. (2003). Human glands of Moll: histochemical and ultrastructural characterization of the glands of Moll in the human eyelid. J. Invest. Dermatol. 121, 28–36.

    Google Scholar 

  • Stoeckelhuber, M., Matthias, C., Andratschke, M., Stoeckelhuber, B.M., Koehler, C., Herzmann, S., Sulz, A. and Welsch, U. (2006). Human ceruminous gland: Ultrastructure and histochemical analysis of antimicrobial and cytoskeletal components. Anat. Rec. Part A 288A, 877–884.

    Google Scholar 

  • Stoeckelhuber, M., Schubert, C., Kesting, M.R., Loeffelbein, D.J., Nieberler, M., Koehler, C. and Welsch, U. (2011). Human axillary apocrine glands: proteins involved in the apocrine secretory mechanism. Histol. Histopathol. 26, 177–177.

    Google Scholar 

  • Taigen, T.L., Pough, F.H. and Stewart, M.M. (1984). Water balance of terrestrial anuran (Eleutherodactylus coqui) eggs: importance of parental care. Ecology 65, 248–255.

    Google Scholar 

  • Takahashi, T. and Kawashima, M. (2008). Mesotocin increases the sensitivity of the hen oviduct uterus to arginine vasotocin. Poultry Sci. 87, 2107–2111.

    Google Scholar 

  • Tedman, R.A. (1983). Ultrastructural morphology of the mammary gland with observations on the size distribution of fat droplets in milk of the Weddell seal Leptonychotes weddelli(Pinnipedia). J. Zool., Lond. 200, 131–141.

    Google Scholar 

  • Thimon, V., Frenette, G., Saez, F., Thabet, M. and Sullivan, R. (2008). Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum. Reprod. 23, 1698–1707.

    Google Scholar 

  • Thomas, B., Gruca, L.L., Bennett, C. and Parimi, P.S. (2008). Metabolism of methionine in the newborn infant: response to the parenteral and enteral administration of nutrients. Pediatr. Res. 64, 381–386.

    Google Scholar 

  • Thompson, M.B., Stewart, J.R. and Speake, B.K. (2000). Comparison of nutrient transport across the placenta of lizards differing in placental complexity. Comp. Biochem. Physiol. A 127, 469–479.

    Google Scholar 

  • Tilden, C.D. and Oftedal, O.T. (1997). Milk composition reflects pattern of maternal care in prosimian primates. Am. J. Primatol. 41, 195–211.

    Google Scholar 

  • Toba, T., Nagashima, S. and Adachi, S. (1991). Is lactose really present in plants? J. Sci. Food Agr. 54, 305–308.

    Google Scholar 

  • Topcic, D., Auguste, A., De Leo, A.A., Lefevre, C., Digby, M.R. and Nicholas, K.R. (2009). Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene; new insights into the function of the protein. Evol. Dev. 11, 363–375.

    Google Scholar 

  • Treccani, L., Mann, K., Heinemann, F. and Fritz, M. (2006). Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys. J. 91, 2601–2608.

    Google Scholar 

  • Triplett, A.A., Sakamoto, K., Matulka, L.A., Shen, L., Smith, G.H. and Wagner, K.U. (2005). Expression of the whey acidic protein (WAP) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis 43, 1–11.

    Google Scholar 

  • Tyndale-Biscoe, H. and Renfree, M. (1987). Reproductive Physiology of Marsupials. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Uemura, Y., Takahashi, S., Senda, A., Fukuda, K., Saito, T., Oftedal, O.T. and Urashima, T. (2009). Chemical characterization of milk oligosaccharides of a spotted hyena (Crocuta crocuta). Comp. Biochem. Physiol. A 152, 158–161.

    Google Scholar 

  • Ullrey, D.E., Schwartz, C.C., Whetter, P.A., Rajeshwar Rao, T., Euber, J.R., Cheng, S.G. and Brunner, J.R. (1984). Blue-green color and composition of Stejneger’s beaked whale (Mesoplodon stejnegeri) milk. Comp. Biochem. Physiol. B 79, 349–352.

    Google Scholar 

  • Urashima, T., Arita, M., Yoshida, M., Nakamura, T., Arai, I., Saito, T., Arnould, J.P., Kovacs, K.M. and Lydersen, C. (2001a). Chemical characterisation of the oligosaccharides in hooded seal (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp. Biochem. Physiol. B 128, 307–323.

    Google Scholar 

  • Urashima, T., Saito, T., Nakamura, T. and Messer, M. (2001b). Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 18, 357–371.

    Google Scholar 

  • Urashima, T., Sato, H., Munakata, J., Nakamura, T., Arai, I., Saito, T., Tetsuka, M., Fukui, Y., Ishikawa, H., Lydersen, C. and Kovacs, K.M. (2002). Chemical characterization of the oligosaccharides in beluga (Delphinapterus leucas) and Minke whale (Balaenoptera acutorostrata) milk. Comp. Biochem. Physiol. B 132, 611–624.

    Google Scholar 

  • Urashima, T., Odaka, G., Asakuma, S., Uemura, Y., Goto, K., Senda, A., Saito, T., Fukuda, K., Messer, M. and Oftedal, O.T. (2009). Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan, and siamang milk or colostrum. Glycobiology 19, 499–508.

    Google Scholar 

  • Varki, A. (1998). Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol. 8, 34–40.

    Google Scholar 

  • Vorbach, C. (2003). Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol. 24, 512–517.

    Google Scholar 

  • Vorbach, C., Scriven, A. and Capecchi, M.R. (2002). The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Gene Dev. 16, 3223–3235.

    Google Scholar 

  • Vorbach, C., Capecchi, M.R. and Penninger, J.M. (2006). Evolution of the mammary gland from the innate immune system? Bioessays 28, 606–616.

    Google Scholar 

  • Watson, C.J. and Khaled, W.T. (2008). Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135, 995–1003.

    Google Scholar 

  • Waverley, J., Clarke, G. and Summerlee, A. (1988). Milk ejection and its control, in, The Physiology of Reproduction, E. Knobil and J. Neill eds., Raven Press, New York, NY. pp. 2283–2321.

    Google Scholar 

  • Whitehead, H. and Mann, J. (2000). Female reproductive strategies of cetaceans: Life histories and calf care, in, Cetacean Societies. Field Studies of Dolphins and Whales, J. Mann, R. Connor, P. Tyack and H. Whitehead eds., University of Chicago Press, Chicago, IL. pp. 219–246.

    Google Scholar 

  • Wible, J.R., Rougier, G.W., Novacek, M.J. and Asher, R.J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447, 1003–1006.

    Google Scholar 

  • Widdowson, E.M. and McCance, R.A. (1955). Physiological undernutrition in the newborn guinea-pig. Brit. J. Nutr. 9, 316–321.

    Google Scholar 

  • Wilhelm, B., Keppler, C., Hoffbauer, G., Lottspeich, F., Linder, D., Meinhardt, A., Auműller, G. and Seitz, J.r. (1998). Cytoplasmic carbonic anhydrase II of rat coagulating gland is secreted via the apocrine export mode. J. Histochem. Cytochem. 46, 505–505.

    Google Scholar 

  • Williford, A., Stay, B. and Bhattacharya, D. (2004). Evolution of a novel function: nutritive milk in the viviparous cockroach, Diploptera punctata. Evol. Dev. 6, 67–77.

    Google Scholar 

  • Wooding, F.B.P., Peaker, M. and Linzell, J.L. (1970). Theories of milk secretion: Evidence from the electron microscopic examination of milk. Nature 226, 762–764.

    Google Scholar 

  • Xiao, J., Takahashi, S., Nishmoto, M., Okazaki, T., Yaeshima, T., Iwatsuki, K. and Kitaoka, M. (2010). Distribution of in vitro fermentation ability of lacto-N-biose I, the major building block of human milk oligosaccharides, in bifidobacterial strains. Appl. Environ. Microbiol. 76, 54–59.

    Google Scholar 

  • Yang, M.C., Chen, N.C., Chen, C.-J., Wu, C.Y. and Mao, S.J.T. (2009). Evidence for β-lactoglobulin involvement in vitamin D transport in vivo– role of the γ-turn (Leu-Pro-Met) of β-lactoglobulin in vitamin D binding. FEBS J. 276, 2251–2265.

    Google Scholar 

  • Zhang, Z., Zhang, B., Nie, X., Liu, Q., Xie, F. and Shang, D. (2009). Transcriptome analysis and identification of genes related to immune function in skin of the Chinese brown frog. Zool. Sci. 26, 80–86.

    Google Scholar 

  • Zhao, Y., Jin, Y., Lee, W. and Zhang, Y. (2006). Purification of a lysozyme from skin secretions of Bufo andrewsi. Comp. Biochem. Physiol. C 142, 46–52.

    Google Scholar 

  • Zou, Z., Evans, J.D., Lu, Z., Zhao, P., Williams, M., Sumathipala, N., Hetru, C., Hultmark, D. and Jiang, H. (2007). Comparative genomic analysis of the Triboliumimmune system. Genom. Biol. 8, R177–R177.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Cambridge University Press for permission to reprint text from my earlier review (Oftedal, 2012) in the journal Animal(© 2011 The Animal Consortium) and to the American Association for the Advancement of Science, the American Museum of Natural History, Elsevier B.V., Johns Hopkins University Press, Jonathan Kingdon, Landes Bioscience, Oxford University Press, the Royal Society, the Society for Sedimentary Geology, Springer Science and Business Media, the University of Tennessee Department of Earth and Planetary Sciences and Yale Scientific Magazine for permission to reproduce copyrighted figures in this paper. I especially thank Alexander Kupfer for kindly providing original photographs of skin feeding in caecilians and Pradman Qasba for providing a corrected version of a figure. I also thank many colleagues for stimulating discussion on the evolution of milk and lactation, a topic which was still in a primitive state when I first presented my ideas at a Gordon Research Conference on Mammary Gland Biology in New Hampshire in June 1999. Although the relationship of α-lactalbumin to lysozyme had long been known, the origin of the caseins was a great mystery, and Ian Mather had yet to clarify for me some of the concerns with an “apocrine origin” for milk fat secretion. Thanks to molecular genetics, there have been great strides in understanding the origin and evolution of the genes required for milk protein synthesis, none of which I can claim credit for. I am especially grateful for the ideas and input of Regina Eisert, Geoff Birchard, Murray Grigor, Peter Hartmann, Michael Messer, Kevin Nicholas, Peggy Neville, Ian Mather, Monique Rijnkels, Tadasu Urashima, and Elsie Widdowson. The Smithsonian Environmental Research Center and its director, Tuck Hines, have supported my long forays into lactation research, even though my current program is focused on nutritional ecology. I thank the Smithsonian Institution Library and its staff for assistance in obtaining the wide range of research publications needed for a review of this type.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. T. Oftedal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oftedal, O.T. (2013). Origin and Evolution of the Major Constituents of Milk. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_1

Download citation

Publish with us

Policies and ethics