Skip to main content

Polyamines Contribution to the Improvement of Crop Plants Tolerance to Abiotic Stress

  • Chapter
  • First Online:
Crop Improvement Under Adverse Conditions

Abstract

Plant development and productivity are negatively regulated by environmental stresses. The loss of productivity is triggered by a series of morphological, physiological, biochemical and molecular stress-induced changes. The development of diverse strategies to obtain stress-tolerant plants is currently one of the most active fields in plant research, which is expected to help prevent the dramatic reduction in crop yields due to global climate changing effects. Therefore, the identification of stress-regulatory genes and signaling molecules involved in the process of stress tolerance should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. In this chapter, we review and discuss the information concerning the modifications in polyamines levels in response to drought, salinity and cold stresses, focusing on crop species. The comparison of common and specific responses in different crop plants suggests the view that polyamines actively participate in stress signaling through an intricate metabolic network. However, the precise mechanism(s) of action by which PAs could protect crop plants from challenging environmental conditions remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Planta 231:1237–1249

    Google Scholar 

  • Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ (1994) Plant Cell 6:1319–1328

    Google Scholar 

  • Anderson BE, Ward JM, Schroeder JI (1994) Plant Physiol 104:1177–1183

    Google Scholar 

  • Antognoni F, Fornalè S, Grimmer C, Komor E, Bagni N (1998) Planta 204:520–527

    Google Scholar 

  • Antolín MC, Santesteban H, Santa María E, Aguirreolea J, Sánchez-Díaz M (2008) Aust J Grape Wine Res 14:123–133

    Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J (2009) J Plant Growth Regul 28:177–186

    Google Scholar 

  • Bae H, Kim S-H, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA (2008) Plant Physiol Biochem 46:174–188

    Google Scholar 

  • Bagni N, Pistocchi R (1991) In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants, CRC press, Boca Raton, FL, pp 105–120

    Google Scholar 

  • Bagni N, Tassoni A (2001) Amino Acids, 20:301–317

    Google Scholar 

  • Baigorri H, Antolín MC, De Luis I, Geny L, Broquedis M, Aguirrezábal F, Sánchez Díaz M (2001) Am J Enol Vitic 52:357–363

    Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Acta Physiol Plant 32:551–563

    Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Planta 189:201–206

    Google Scholar 

  • Borrell A, Culianez-Macia F, Altabella T, Besford R, Flores D, Tiburcio A (1995) Plant Physiol 109:771–776

    Google Scholar 

  • Bortolotti C, Cordeiro A, Alcázar R, Borrell A, Culiañez-Macià FA, Tiburcio AF, Altabella T (2004) Physiol Plant 120:84–92

    Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Plant Sci 140:103–125

    Google Scholar 

  • Caffaro SV, Vicente C (1994) Plant Physiol Biochem 32:391–397

    Google Scholar 

  • Campestre MP, Bordenave CD, Origone AC, Menéndez AB, Ruiz OA, Rodríguez AA, Maiale SJ (2011) J Plant Physiol 168:1234–1240

    Google Scholar 

  • Capell T, Bassie L, Christou P (2004) PNAS 101:9909–9914

    Google Scholar 

  • Cervelli M, Di Caro O, Di Penta A, Angelini R, Federico R, Vitale A, Mariottini P (2004) Plant J 40:410–418

    Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DN, Ghosh B (1997) Plant Mol Biol 34:477–483

    Google Scholar 

  • Chattopadhyay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Physiol Plant 116:192–199

    Google Scholar 

  • Chen W, Provart NJ, Glazebrook J (2002) Plant Cell 14:559–574

    Google Scholar 

  • Chen WP, Li PH (2002) In: Li C, Palva ET (eds) Plant cold hardiness, Kluwer Academic Publishers, Dordrecht, NL, pp 223–233

    Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2003) Cell Mol Life Sci 60:1394–1406

    Google Scholar 

  • Cona A, Cenci F, Cervelli M, Fedrico R, Mariottini P, Moreno S, Angelini R (2003) Plant Physiol 110:137–145

    Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Trends Plant Sci 11:80–88

    Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcàzar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Plant Physiol 148:1094–1105

    Google Scholar 

  • Del Duca H, Beninati S, Serafini-Fracassini D (1995) Biochem J 305:233–237

    Google Scholar 

  • Delauney AJ, Verma DPS (1993) Plant J 4:215–223

    Google Scholar 

  • Demidchik V, Maathuis FJM (2007) New Phytol 175:387–404

    Google Scholar 

  • Di Tomaso lM, Hart JJ, Kochian LV (1992) Plant Physiol 98:611–620

    Google Scholar 

  • Dondini L, Del Duca S, Dall’Agata L, Bassi R, Gastaldelli M, Della Mea M, Di Sandro A, Claparols I, Serafini-Fracassini D (2003) Planta 217:84–95

    Google Scholar 

  • Edreva AM, Velikova VB, Tsonev TD (2007) Russ J Plant Physiol 54:287–301

    Google Scholar 

  • El-bassiouny HMS, Bekheta MA (2005) Int J Agric Biol 7:363–368

    Google Scholar 

  • El-Shintinawy F (2000) Photosynthetica 38:615–620

    Google Scholar 

  • Erdei L, Szegletes Z, Barabás K, Pestenácz A (1996) J Plant Physiol 147:599–603

    Google Scholar 

  • Evers D, Lefèvre I, Legay S, Lamoureux D, Hausman J-F, Gutierrez Rosales RO, Tincopa Marca LP, Hoffmann L, Bonierbale M, Schafleitner R (2010) J Exp Bot 61:2327–2343

    Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Acta Physiol Plant 31:937–945

    Google Scholar 

  • Federico R, Angelini R (1991) In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants, CRS Press, Boca Raton, FL, pp 41–56

    Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2011) J Exp Bot 62:1155–1168

    Google Scholar 

  • Flores HE, Galston AW (1984) Plant Physiol 75:102–109

    Google Scholar 

  • Flores HE, Martin-Tanguy J (1991) In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants, CRS Press, Boca Raton, FL, pp 57–76

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Nature, 422:442–446

    Google Scholar 

  • Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Plant Physiol Biochem 48:513–520

    Google Scholar 

  • Fujihara S, Abe H, Yoneyama T (1995) J Biol Chem 270:9932–9938

    Google Scholar 

  • Galston AW, Sawhney RK (1990) Plant Physiol 94:406–410

    Google Scholar 

  • Gao C, Hu J, Zhang S, Zheng Y, Knapp A (2009) Plant Growth Reg 57:31–38

    Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Plant Physiol 126:1196–1204

    Google Scholar 

  • García-Mata C, Lamattina L (2002) Plant Physiology 128:790–792

    Google Scholar 

  • Geny L, Colin L, Brazillon I, Broquedis M (1999) Vitis 38:157–160

    Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Gupta DNS, Mandal C (2011) Plant Biotech Rep 5:89–103

    Google Scholar 

  • Gill SS, Tuteja N (2010) Plant Signal Behav 5:26–33

    Google Scholar 

  • Groppa MD, Benavides MP (2008) Amino Acids 34:35–45

    Google Scholar 

  • Guye MG, Vigh L, Wilson JL (1986) J Exp Bot 37:1036–1043

    Google Scholar 

  • Handa AK, Mattoo AK (2010) Plant Physiol Biochem 487:540–546

    Google Scholar 

  • Hanzawa Y, Takahashi T, Michael J (2000) EMBO J 19:4248–4256

    Google Scholar 

  • Hart JJ, DiTomaso JM, Linscott DL, Kochian LV (1992) Plant Physiol 99:1400–1405

    Google Scholar 

  • Hazarika P, Rajam MV (2011) Physiol Mol Biol Plants 17:115–128

    Google Scholar 

  • He L, Nada K, Tachibana S (2002) J Jpn Soc Hortic Sci 71:490–498

    Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu JM (2008) Phytochem 69:2133–2141

    Google Scholar 

  • Hummel I, Couée I, Amrani A, Martin-Tanguy J, Hennion F (2002) J Exp Bot 53:1463–1473

    Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Biochem Biophys Res Commun 271:559–564

    Google Scholar 

  • Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2000) FEBS Lett 549:26–30

    Google Scholar 

  • Imai R, Ali A, Pramanik MdHR, Nakaminami K, Sentoku N, Kato H (2004) J Plant Physiol 161:883–886

    Google Scholar 

  • Islam MA, Blake T, Kocacinar F, Lada R (2003) Trees 17:278–284

    Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Plant Biol 12:395–405

    Google Scholar 

  • Jiménez-Bremont JF, Ruiz OA, Rodríguez-Kessler M (2007) Plant Physiol Biochem 45:812–821

    Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Biolo Plant 43:1–11

    Google Scholar 

  • Kakkar RK, Sawney YK (2002) Physiol Plant 116:281–292

    Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) Plant Cell Physiol 49:1272–1282

    Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Plant and Cell Physiology 45:712–722

    Google Scholar 

  • Kasukabe, Y, He L,Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Plant Biotechnology 23:75–83

    Google Scholar 

  • Kim TE, Kim SK, Han TJ, Lee JS, Chang SC (2002) Physiol Plant 115:370–376

    Google Scholar 

  • Knott JM, Römer P, Sumper M (2007) FEBS Lett 581:3081–3086

    Google Scholar 

  • Kotzabasis K, Fotinou C, Roubelakis-Angelakis KA, Ghanotakis D (1993) Photosynth Res 38:83–88

    Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Plant Physiol 91:500–504

    Google Scholar 

  • Kubis J (2008) J Plant Physiol 165:397–406

    Google Scholar 

  • Kuehn GO, Bagga S, Rodriguez-Garay B, Philipps AC (1990) In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: Biochemistry, physiology and interactions, American Society of Plant Physiology, pp 190–202

    Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Planta 228:367–381

    Google Scholar 

  • Kuznetsov V, Radukina NL, Shevyakoval NI (2007) Metabolism of polyamines and prospects for producing stress-tolerant plants: An overview. In: Thangadurai D, Tang W, Song S-Q (eds) Plant stress and biotechnology, Oxford Book Company, Jaipur, India, p 257

    Google Scholar 

  • Laurenzi M, Rea G, Federico R, Tavladoraki P, Angelini R (1999) Planta 208:146–154

    Google Scholar 

  • Laurenzi M, Tipping AJ, Marcus SE, Knox JP, Federico R, Angelini R, McPherson MJ (2001) Planta 214:37–45

    Google Scholar 

  • Lee TM, Lur HS, Chu C (1995) Crop Sci 35:502–508

    Google Scholar 

  • Lee TM, Lur HS, Chu C (1997) Plant Sci 126:1–10

    Google Scholar 

  • Legocka J, Kluk A (2005) J Plant Physiol 162:662–668

    Google Scholar 

  • Lei Y (2008) Russ J Plant Physiol 55:857–864

    Google Scholar 

  • Lester GE (2000) Plant Sci 160:105–112

    Google Scholar 

  • Li CZ, Jiao J, Wang GX (2004) Plant Sci 166:303–315

    Google Scholar 

  • Li ZY, Chen SY (2000) Theor Appl Genet 100:782–788

    Google Scholar 

  • Liu H, Liu Y, Yu B, Liu Z, Zhang W (2004) J Plant Growth Reg 23:156–165

    Google Scholar 

  • Liu H, Nakajima I, Moriguchi T (2011) Biol Plant 55:340–344

    Google Scholar 

  • Liu HH, Dong BH, Zhang YY, Liu ZP, Liu YL (2004) Plant Sci 166:1261–1267

    Google Scholar 

  • Liu HP, Yu BJ, Zhang WH, Liu YL (2005) Plant Sci 168:1599–1607

    Google Scholar 

  • Liu J, Yu B-J, Liu Y-L (2006) Plant Growth Reg 49:119–126

    Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Plant Biotech 24:117–126

    Google Scholar 

  • Liu JH, Nakajima I, Moriguchi T (2011) Biol Plant 55:340–344

    Google Scholar 

  • Livingston DP, Premakumar R, Tallury SP (2006) Cryobiology 52:200–208

    Google Scholar 

  • Maiale S, Sanchez DH, Guirado A, Vidal A, Ruiz O (2004) J Plant Physiol 161:35–42

    Google Scholar 

  • Mansour MMF, Al-Mutawa MM (1999) Cytobios 100:7–17

    Google Scholar 

  • Mariani P, D’Orazi D, Bagni N (1989) J Plant Physiol 135:508–510

    Google Scholar 

  • Martin-Tanguy J (1997) Physiol Plant 100:675–688

    Google Scholar 

  • Medda R, Padiglia A, Pedersen JZ, Rotilio G, Finazzi Agrò A, Floris G (1995) Biochem 34:16375–16381

    Google Scholar 

  • Moller SG, McPherson MJ (1998) Plant J 13:781–791

    Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Plant Cell 20:1708–1724

    Google Scholar 

  • Nadeau P, Delaney S, Chouinard L (1987) Plant Physiol 84:73–77

    Google Scholar 

  • Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai MA, Kusano T, Takahashi Y (2010) Plant Physiol Biochem 48:527–533

    Google Scholar 

  • Nayyar H, Chander S (2004) J Agr Crop Sci 190:355–365

    Google Scholar 

  • Nayyar H (2005) J Agr Crop Sci 191:340–345

    Google Scholar 

  • Németh M, Janda T, Horváth E, Páldi E, Szalai G (2002) Plant Sci 162:569–574

    Google Scholar 

  • Oufir M, Legay S, Nicot N, Van Moer K, Hoffmann L, Renaut J, Hausman JF, Evers D (2008) Plant Sci 175:839–852

    Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Plant Mol Biol 48:551–573

    Google Scholar 

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Plant Cell Physiol 51:422–434

    Google Scholar 

  • Pang JY, Long YH, Chen WH, Jiang ZH (2007) Bioorg Med Chem Lett 17:1018–1021

    Google Scholar 

  • Pang X-M, Zhang Z-Y, Wen X-P, Ban Y, Moriguchi T. Plant Stress 1:173–188

    Google Scholar 

  • Paul T, Tran TV, Elise P (2008) Vetiver systems applications: A technical reference. The Vetiver Network International, US

    Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Plant Mol Biol 70:253–264

    Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Plant Physiol 130:1454–1463

    Google Scholar 

  • Pillai MA, Akiyama T (2004) Mol Genet Genomics 271:141–149

    Google Scholar 

  • Ponappa T, Miller AR (1996) Physiol Plant 98:447–454

    Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Plant Biotech 24:273–282

    Google Scholar 

  • Rácz I, Kovács M, Lasztity D, Veisz O, Szalai G, Páldi E (1996) J Plant Physiol 148:368–373

    Google Scholar 

  • Rastogi R, Davies PJ (1991) In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants CRC Press, Boca Raton, FL pp 187–199

    Google Scholar 

  • Rea G, De Pinto MC, Tavazza R, Biondi S, Gobbi V, Ferrante P, De Gara L, Federico R, Angelini R, Tavladoraki P (2004) Plant Physiol 134:1414–1426

    Google Scholar 

  • Reggiani R, Zaina S, Bertani A (1992) Phytochem 31:417–419

    Google Scholar 

  • Reggiani R, Bozob P, Bertania A (1994) Plant Sci 102:121–126

    Google Scholar 

  • Rodríguez AA, Grunberg KA, Taleisnik EL (2002) Plant Physiol 129:1627–1632

    Google Scholar 

  • Rodríguez AA, Córdoba AR, Ortega L, Taleisnik E (2004) J Exp Bot 55:1383–1390

    Google Scholar 

  • Rodríguez AA, Lascano R, Bustos D, Taleisnik E (2007) J Plant Physiol 164:223–230

    Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) J Exp Bot 60:4249–4262

    Google Scholar 

  • Rodríguez-Kessler M, Alpuche-Solís AG, Ruiz OA, Jiménez-Bremont JF (2006) Plant Growth Reg 48:175–185

    Google Scholar 

  • Roy M, Wu R (2001) Plant Sci 160:869–875

    Google Scholar 

  • Roy M, Wu R (2002) Plant Sci 163:987–992

    Google Scholar 

  • Roy P, Niyogi K, Sengupta DN, Ghosh B (2005) Plant Sci 168:583–591

    Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Plant Cell Rep 27:1395–1410

    Google Scholar 

  • Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort II, Pec P (2001) Plant Sci 160:197–207

    Google Scholar 

  • Serrano S, Martínez-Madrid MC, Riquelme F, Romojaro F (1995) Physiol Plant 95:73–76

    Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) FEBS Lett 581:1993–1999

    Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Plant Physiol 124:431–439

    Google Scholar 

  • Shi IE, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Tree Physiol 30:914–922

    Google Scholar 

  • Shiozaki S, Ogata T, Horiuchi S (2000) Sci Hort 83:33–41

    Google Scholar 

  • Slocum RD (1991) Polyamine biosynthesis in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants,. CRS Press, Boca Raton, FL, pp 23–40

    Google Scholar 

  • Srivastava SK, Rajbabu P (1983) Phytochem 22:2675–2679

    Google Scholar 

  • Sugiyama S, Vassylyev DG, Matsushima M, Kashiwagi K, Igarashi K, Morikawa K (1996) J Biol Chem 271:9519–9525

    Google Scholar 

  • Szalai G, Janda T, Bartók T, Páidi E (1997) Physiol Plant 101:434–438

    Google Scholar 

  • Szalai G, Pap M, Janda T (2009) J Plant Physiol 166:1826–1831

    Google Scholar 

  • Sziderics AH, Oufir M, Trognitz F, Kopecky D, Matušíková I, Hausman JF, Wilhelm, E (2010) Plant Cell Rep 29:295–305

    Google Scholar 

  • Takahashi T, Kakehi JI (2010) Ann Bot 105:1–6

    Google Scholar 

  • Tang W, Newton RJ, Li C Charles TM (2007) Plant Cell Rep 26:115–124

    Google Scholar 

  • Tassoni A, Antognoni FA, Bagni N (1996) Plant Physiol 110:817–824

    Google Scholar 

  • Tassoni A, Van Buuren M, Franceschetti M, Fornalè S, Bagni N (2000) Plant Physiol Biochem 38:383–393

    Google Scholar 

  • Tassoni A, Napier RM, Francescheti M, Venis MA, Bagni N (2002) Plant Physiol 128:1303–1312

    Google Scholar 

  • Tassoni A, Fornalè S, Bagni N (2003) Plant Physiol Biochem 41:871–875

    Google Scholar 

  • Theiss C, Bohley P, Voigt J (2002) Plant Physiol 128:1470–1479

    Google Scholar 

  • Tian A, Zhao J, Zhang J, Gai J, Chen S (2004) Theor Appl Genet 108:842–850

    Google Scholar 

  • Tiburcio AF, Besford RT, Capell T, Borrell A, Testillano PS, Risueno MC (1994) J Exp Bot 45:1789–1800

    Google Scholar 

  • Torrigiani P, Serafini-Fracassini D, Biondi S, Bagni N (1986) J Plant Physiol 124:23–29

    Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-Fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) J Plant Physiol 167:519–525

    Google Scholar 

  • Turner LB, Stewart GR (1986) J Exp Bot 37:170–177

    Google Scholar 

  • Vassylyev DG, Tomitori H, Kashiwagi K, Morikawa K, Igarashi K (1998) J Biol Chem 273:17604–17609

    Google Scholar 

  • Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J (2010) Plant Physiol Biochem

    Google Scholar 

  • Votyakova TV, Wallace HM, Dunbar B, Wilson SB (1999) Eur J Biochem 260:250–257

    Google Scholar 

  • Waie B, Rajam MV (2003) Plant Sci 164:727–734

    Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Transgenic Res 17:251–263

    Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Plant Cell Rep 25:1111–1121

    Google Scholar 

  • Xing SG, Jun YB, Hau ZW, Liang LY (2007) Plant Physiol Biochem 45:560–566

    Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) J Exp Bot 58:1545–1555

    Google Scholar 

  • Yin C, Duan B, Wang X, Li C (2004) Plant Sci 167:1091–1097

    Google Scholar 

  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009) Sci Hortic 122:200–208

    Google Scholar 

  • Zhang X, Zang R, Li C (2004) Plant Sci 166:791–797

    Google Scholar 

  • Zhao FG, Qin P (2004) Plant Growth Reg 42:97–103

    Google Scholar 

  • Zheng YY, Hu J, Xu SC, Guan YJ, Wang XJ (2009) Seed Sci Tech 37:59–69

    Google Scholar 

  • Zhou Q, Yu B (2010) Plant Physiol Biochem 48:417–425

    Google Scholar 

  • Zhuang YL, Ren GJ, Zhu Y, Hou GH, Qu X, Li ZX, Yue GD, Zhang JR (2008) Physiologia Plantarum 52:759–762

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from PICT of Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT, Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), San Martin University (UNSAM) to OAR. OAR also acknowledges grants-in-aid from COST-Action FA0605. MEG and FDE are fellows of CONICET (Argentina). ABM, SJM, AAR and OAR are members of the research committee from CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Adolfo Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menéndez, A., Rodriguez, A., Maiale, S., Rodriguez, K., Jimenez, B., Ruiz, O. (2013). Polyamines Contribution to the Improvement of Crop Plants Tolerance to Abiotic Stress. In: Tuteja, N., Gill, S. (eds) Crop Improvement Under Adverse Conditions. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4633-0_5

Download citation

Publish with us

Policies and ethics