Skip to main content

Age and Sex Differences in Cerebral Blood Flow and Autoregulation after Pediatric Traumatic Brain Injury

  • Chapter
  • First Online:
Cerebral Blood Flow, Metabolism, and Head Trauma

Abstract

Traumatic brain injury (TBI) is a global health concern and is the leading cause of traumatic morbidity and mortality in children. Despite a lower overall mortality than in adult traumatic brain injury, the cost to society from the sequelae of pediatric traumatic brain injury is very high. Predictors of poor outcome after traumatic brain injury include altered systemic and cerebral physiology, including altered cerebral hemodynamics. Impaired cerebral hemodynamics including cerebral blood flow and autoregulation following TBI may adversely impact poor outcome and may be age and or sex dependent. Yet, there is a paucity of information regarding changes in cerebral blood flow and cerebral autoregulation after pediatric traumatic brain injury by age and sex. In this chapter, we discuss the impact of pediatric TBI by observations made in children and in a piglet model of fluid percussion injury on normal pediatric cerebral physiology and cerebrovascular pathophysiology, such as CO2 vasoreactivity and pressure autoregulation, focusing on age and sex differences observed in a bench to bedside translational paradigm. The first half of this chapter discusses the present understanding of age- and sex-dependent differences in cerebral hemodynamics in children, and the second half of the chapter presents information on what we have learned about the mechanisms of those age- and sex-related observations made in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaslid R, Huber P, Nornes H (1984) Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 60:37–41

    PubMed  CAS  Google Scholar 

  • Adelson PD (1999) Animal models of traumatic brain injury in the immature: a review. Exp Toxicol Pathol 51:130–136

    PubMed  CAS  Google Scholar 

  • Adelson PD, Clyde B, Kochanek PM et al (1997) Cerebrovascular response in infants and young children following severe traumatic brain injury: A preliminary report. Pediatr Neurosurg 26:200–207

    PubMed  CAS  Google Scholar 

  • Adelson PD, Bratton SL, Carney NA et al (2003a) Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Pediatr Crit Care Med 4(Suppl 3):S1–S71

    Google Scholar 

  • Adelson PD, Bratton SL, Carney NA, Chesnut RM, du Coudray HE, Goldstein B, Kochanek PM, Miller HC, Partington MD, Selden NR, Warden CR, Wright DW, American Association for Surgery of Trauma, Child Neurology Society, International Society for Pediatric Neurosurgery, International Trauma Anesthesia and Critical Care Society, Society of Critical Care Medicine, World Federation of Pediatric Intensive and Critical Care Societies (2003b) Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Pediatr Crit Care Med 4(3 Suppl):S12–S18

    PubMed  Google Scholar 

  • Aldrich EF, Eisenberg HM, Saydjari C et al (1992) Diffuse brain swelling in severely head-injured children. A report from the NIH Traumatic Coma Data Bank. J Neurosurg 76:450–454

    PubMed  CAS  Google Scholar 

  • Aparicio JM, Tavares C, Teixeira-Pinto A et al (2001) Cerebral vasospasm in pediatric head injuries: transcranial Doppler ultrasound findings. Cerebrovasc Dis 11(suppl 3):38

    Google Scholar 

  • Armstead WM (1997) Brain injury impairs ATP-sensitive K+ channel function in piglet cerebral arteries. Stroke 28:2273–2280

    PubMed  CAS  Google Scholar 

  • Armstead WM (1999a) Role of endothelin-1 in age dependent cerebrovascular hypotensive responses after brain injury. Am J Physiol 277:H1884–H1894

    PubMed  CAS  Google Scholar 

  • Armstead WM (1999b) Hypotension dilates pial arteries by KATP and Kca channel activation. Brain Res 816:158–164

    PubMed  CAS  Google Scholar 

  • Armstead WM (2000) Age-dependent cerebral hemodynamic effects of traumatic brain injury in newborn and juvenile pigs. Microcirculation 7:225–235

    PubMed  CAS  Google Scholar 

  • Armstead WM (2001) Age dependent endothelin contribution to NOC/oFQ induced impairment of NMDA cerebrovasodilation after brain injury. Peptides 22:39–46

    PubMed  CAS  Google Scholar 

  • Armstead WM (2002) Age dependent NMDA contribution to impairedhypotensive cerebral hemodynamics following brain injury. Brain Res Dev Brain Res 139:19–28

    PubMed  CAS  Google Scholar 

  • Armstead WM (2005) Age and cerebral circulation. Pathophysiology 12:5–15

    PubMed  Google Scholar 

  • Armstead WM, Kreipke CW (2011) Endothelin-1 is upregulated after traumatic brain injury: A cross-species, cross-model analysis. Neurol Res 33:133–136

    PubMed  CAS  Google Scholar 

  • Armstead WM, Kurth CD (1994) Different cerebral hemodynamic responses following fluid percussion brain injury in the newborn and juvenile pig. J Neurotrauma 11:487–497

    PubMed  CAS  Google Scholar 

  • Armstead WM, Raghupathi R (2011) Endothelin and the neurovascular unit in pediatric traumatic brain injury. Neurol Res 33:127–132

    PubMed  CAS  Google Scholar 

  • Armstead WM, Vavilala MS (2007) Adrenomedullin reduces sex dependent loss of hypotensive cerebrovasodilation after newborn brain injury through activation of ATP dependent K channels. J Cereb Blood Flow Metab 27:1702–1709

    PubMed  CAS  Google Scholar 

  • Armstead WM, Mirro R, Leffler CW, Busija DW (1989) Influence of endothelin on piglet cerebral microcirculation. Am J Physiol 257:H707–H710

    PubMed  CAS  Google Scholar 

  • Armstead WM, Cines DB, Higazi AAR (2005) Plasminogen activators contribute to age dependent impairment of NMDA cerebrovasodilaton after brain injury. Brain Res Dev Brain Res 156:136–146

    Google Scholar 

  • Armstead WM, Nassar T, Akkawi S, Smith DH, Chen XH, Cines DB et al (2006) Neutralizing the neurotoxic effects of exogenous and endogenous tPA. Nat Neurosci 9:1150–1157

    PubMed  CAS  Google Scholar 

  • Armstead WM, Kiessling JW, Bdeir K, Kofke WA, Vavilala MS (2010a) Adrenomedullin prevents sex dependent impairment of autoregulation during hypotension after piglet brain injury through inhibition of ERK MAPK upregulation. J Neurotrauma 27:391–402

    PubMed  Google Scholar 

  • Armstead WM, Kiessling JW, Kofke WA, Vavilala MS (2010b) Impaired cerebral blood flow autoregulation during post traumatic arterial hypotension after fluid percussion brain injury is prevented by phenylephrine in female but exacerbated in male piglets by ERK MAPK upregulation. Crit Care Med 38:1868–1874

    PubMed  CAS  Google Scholar 

  • Armstead WM, Kiessling JW, Riley J, Kofke WA, Vavilala MS (2011a) Phenylephrine infusion prevents impairment of ATP and Calcium sensitive K channel mediated cerebrovasodilation after brain injury in female but aggravates impairment in male piglets through modulation of ERK MAPK upregulation. J Neurotrauma 28:105–111

    PubMed  Google Scholar 

  • Armstead WM, Kiessling JW, Cines DB, Higazi AAR (2011b) Glucagon protects against impaired NMDA-mediated cerebrovasodilation and cerebralautoregulation during hypotension after brain injury by activating cAMP protein kinase A and inhibiting upregulation of tPA. J Neurotrauma 28:451–457

    PubMed  Google Scholar 

  • Armstead WM, Kiessling JW, Riley J, Cines DB, Higazi AAR (2011c) tPA contributes to impaired NMDA cerebrovasodilation after traumatic brain injury through activation of JNK MAPK. Neurol Res 33:726–733

    PubMed  CAS  Google Scholar 

  • AşılıoÄŸlu N, Turna F, Paksu MS (2011) Admission hyperglycemia is a reliable outcome predictor in children with severe traumatic brain injury. J Pediatr (Rio J) 87(4):325–328

    Google Scholar 

  • Bari F, Louis T, Meng W, Busija DW (1996) Global ischemia impairs ATP-sensitive K channel function in cerebral arterioles in piglets. Stroke 27:1874–1881

    PubMed  CAS  Google Scholar 

  • Bellner J, Romner B, Reinstrup P et al (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62(1):45–51

    PubMed  Google Scholar 

  • Biagi L, Abbruzzese A, Bianchi MC et al (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702

    PubMed  Google Scholar 

  • Bode H (1988) Pediatric Applications of Transcranial Doppler Sonography. Springer, New york, pp 1–144, A Holzhausens

    Google Scholar 

  • Bouma GJ, Muizelaar JP, Fatouros P (1998) Pathogenesis of traumatic brain swelling: Role of cerebral blood volume. Acta Neurochir Suppl 71:272–275

    PubMed  CAS  Google Scholar 

  • Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW, Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS (2007) Guidelines for the management of severe traumatic brain injury. J Neurotrauma 24(Suppl 1):S14–S20

    PubMed  Google Scholar 

  • Brenet O, Granry JC, Poirier N et al (1998) The effect of desflurane on cerebral blood flow velocity and cerebrovascular reactivity to CO2 in children. Ann Fr Anesth Reanim 17:227–233

    PubMed  CAS  Google Scholar 

  • Bruce DA, Alavi A, Bilaniuk L et al (1981) Diffuse cerebral swelling following head injuries in children; the syndrome of malignant brain edema. J Neurosurg 54:170–178

    PubMed  CAS  Google Scholar 

  • Buckley JM (1986) Maturation of circulatory system in three mammalian models of hum an development. Comp Biochem Physiol 83:1–7

    CAS  Google Scholar 

  • Carmona Suazo JA, Maas AI, van den Brink WA et al (2000) CO2 reactivity and brain oxygen pressure monitoring in severe head injury. Crit Care Med 28:3268–3274

    PubMed  CAS  Google Scholar 

  • Chambers IR, Stobbart L, Jones PA et al (2005) Age-related differences in intracranial pressure and cerebral perfusion pressure in the first 6 hours of monitoring after children’s head injury: association with outcome. Childs Nerv Syst 21:195–199

    PubMed  CAS  Google Scholar 

  • Chambers IR, Jones PA, Lo TY et al (2006) Critical thresholds of intracranial pressure and cerebral perfusion pressure related to age in paediatric head injury. J Neurol Neurosurg Psychiatry 77:234–240

    PubMed  CAS  Google Scholar 

  • Chan KH, Dearden NM, Miller JD et al (1992) Transcranial Doppler waveform differences in hyperemic and nonhyperemic patients after severe head injury. Surg Neurol 38(6):433–436

    PubMed  CAS  Google Scholar 

  • Chesnut RM, Marshall LF, Klauber MR et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–222

    PubMed  CAS  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    PubMed  CAS  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    PubMed  CAS  Google Scholar 

  • Coles JP, Minhas PS, Fryer TD et al (2002) Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med 30:1950–1959

    PubMed  CAS  Google Scholar 

  • Coles JP, Fryer TD, Smielewski P et al (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24(2):202–211

    PubMed  Google Scholar 

  • Coles JP, Fryer TD, Coleman MR et al (2007) Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med 35:568–578

    PubMed  CAS  Google Scholar 

  • Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33(10):2207–2213

    PubMed  Google Scholar 

  • Dickerson JWT, Dobbing J (1967) Prenatal and postnatal growth and development of the central nervous system of the pig. Proc R Soc London 166:384–395

    Google Scholar 

  • Diringer MN, Videen TO, Yundt K et al (2002) Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg 96:103–108

    PubMed  Google Scholar 

  • Ducrocq SC, Meyer PG, Orliaguet GA et al (2006) Epidemiology and early predictive factors of mortality and outcome in children with traumatic severe brain injury: Experience of a French pediatric trauma center. Pediatr Crit Care Med 7:461–467

    PubMed  Google Scholar 

  • Duhaime AC, Raghupathi R (1999) Age-specific therapy for traumatic injury of the immature brain: experimental approaches. Exp Toxicol Pathol 51:172–177

    PubMed  CAS  Google Scholar 

  • Fanne A, Nassar T, Yarovoi S, Rayan A, Lamensdorf I, Karakoveski M et al (2010) Blood brain barrier permeability and tPA-mediated neurotoxicity. Neuropharmacology 58:972–980

    PubMed  Google Scholar 

  • Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97

    PubMed  CAS  Google Scholar 

  • Fisher AQ, Truemper EJ (1999) Applications in the neonate and child. In: Babikian VL, Weschler LR (eds) Transcranial Doppler Ultrasonography, 2nd edn. Butterworth-Heinemann, Boston, pp 355–376

    Google Scholar 

  • Foley N, Marshall S, Pikul J, Salter K, Teasell R (2008) Hypermetabolism following moderate to severe traumatic acute brain injury: a systematic review. J Neurotrauma 25(12):1415–1431, Review

    PubMed  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Freeman SS, Udomphorn Y, Armstead WM, Fisk DM, Vavilala MS (2008) Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury. Anesthesiology 108(4):588–595

    PubMed  Google Scholar 

  • Gennarelli TA (1994) Animate models of human head injury. J Neurotrauma 11:357–368

    PubMed  CAS  Google Scholar 

  • Giller CA, Hatab MR, Giller AM (1998) Estimation of vessel flow and diameter during cerebral vasospasm using transcranial Doppler indices. Neurosurgery 42:1076–1081

    PubMed  CAS  Google Scholar 

  • Graffagnino C, Gurram AR, Kolls B, Olson DM (2010) Intensive insulin therapy in the neurocritical care setting is associated with poor clinical outcomes. Neurocrit Care 13(3):307–312

    PubMed  CAS  Google Scholar 

  • Harper AM, Glass HI (1965) Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial pressures. J Neurol Neurosurg Psychiatry 28:449–552

    PubMed  CAS  Google Scholar 

  • Hovda DA, Yoshino A, Kawamata T et al (1991) Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res 567:1–10

    PubMed  CAS  Google Scholar 

  • Hoyert DL, Heron MP, Murphy SL et al (2006) Deaths: Final Data for 2003. Natl Vital Stat Rep 54:1–120

    PubMed  Google Scholar 

  • Ishikawa S, Ito H, Yokoyama K, Makita K (2009) Phenylephrine ameliorates cerebral cyotoxic edema and reduces cerebral infarction volume in a rat model of complete unilateral carotid occlusion with severe hypotension. Anesth Analg 108:1631–1637

    PubMed  Google Scholar 

  • Jankowitz BT, Adelson PD (2006) Pediatric traumatic brain injury: Past, present and future. Dev Neurosci 28:264–275

    PubMed  CAS  Google Scholar 

  • Jennett B, Teasdale G, Braakman R et al (1979) Prognosis of patients with severe head injury. Neurosurgery 4:283–289

    PubMed  CAS  Google Scholar 

  • Karsli C, Luginbuehl I, Farrar M et al (2003) Cerebrovascular carbon dioxide reactivity in children anaesthetized with propofol. Paediatr Anaesth 13:26–31

    PubMed  Google Scholar 

  • Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    PubMed  CAS  Google Scholar 

  • Keenan HT, Nocera M, Bratton SL (2005) Frequency of intracranial pressure monitoring in infants and young toddlers with traumatic brain injury. Pediatr Crit Care Med 6(5):537–541

    PubMed  Google Scholar 

  • Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36:1130–1137

    PubMed  CAS  Google Scholar 

  • Kirkham FJ (1991) Intracranial pressure and cerebral blood flow in non-traumatic coma in childhood. In: Minns RA (ed). Measurement of intracranial pressure and cerebral blood flow in children. Clinics in Developmental Medicine, vols 113–114, pp 283–8

    Google Scholar 

  • Kokoska ER, Smith GS, Pittman T et al (1998) Early hypotension worsens neurological outcome in pediatric patients with moderately severe head trauma. J Pediatr Surg 33:333–338

    PubMed  CAS  Google Scholar 

  • Kulkarni M, Armstead WM (2002) Relationship between NOC/oFQ, dynorphin and COX- activation in impaired NMDA cerebrovasodilation after brain injury. J Neurotrauma 19:965–973

    PubMed  Google Scholar 

  • Laher I, Zhang JH (2001) Protein kinase C and cerebral vasospasm. J Cerebral Blood Flow Metab 21:887–906

    CAS  Google Scholar 

  • Lam AM, Matta BF, Mayberg TS et al (1995) Change in cerebral blood flow velocity with onset of EEG silence during inhalation anesthesia in humans: evidence of flow-metabolism coupling? J Cereb Blood Flow Metab 15:714–717

    PubMed  CAS  Google Scholar 

  • Langlois JA, Rutland-Brown W, Thomas KE (2005) The incidence of traumatic brain injury among children in the United States: differences by race. J Head Trauma Rehabil 20(3):229–238

    PubMed  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238

    PubMed  CAS  Google Scholar 

  • Lee JH, Kelly DF, Oertel M et al (2001) Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J Neurosurg 95:222–232

    PubMed  CAS  Google Scholar 

  • Lenzi P, Zoccoli G, Walker AM et al (2000) Cerebral circulation in rem sleep: is oxygen a main regulating factor? Sleep Res Online 3:77–85

    PubMed  CAS  Google Scholar 

  • Leon JE, Bissonnette B (1991) Cerebrovascular responses to carbon dioxide in children anaesthetized with halothane and isoflurane. Can J Anaesth 38:817–825

    PubMed  CAS  Google Scholar 

  • Luerrsen TG, Klauber MR, Marshall LF (1988) Outcome from head injury related to patient’s age: A longitudinal prospective study of adult and pediatric study of adult and pediatric head injury. J Neurosurg 68:409–416

    Google Scholar 

  • Madsen PL, Schmidt JF, Wildschiodtz G et al (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 70:2597–2601

    PubMed  CAS  Google Scholar 

  • Mandera M, Larysz D, Wojtacha M (2002) Changes in cerebral hemodynamics assessed by transcranial Doppler ultrasonography in children after head injury. Childs Nerv Syst 18:124–128

    PubMed  Google Scholar 

  • McIntosh TK, Noble L, Andrews B, Faden AI (1987) Traumatic brain injury in the cat: characterization of a midline fluid percussion model. Cent Nerv Syst Trauma 4:119–134

    PubMed  CAS  Google Scholar 

  • McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AI (1989) Traumatic brain injury in the rat: characterization of a lateral fluid percussion model. Neuroscience 28:233–244

    PubMed  CAS  Google Scholar 

  • Merchant RE, Bullock MR, Carmack CA, Shah AK, Wilner DK, Ko G et al (1999) A double blind, placebo controlled study of the safety, tolerability and pharmacokinetics of CP-101,606 in patients with a mild or moderate traumatic brain injury. Ann N Y Acad Sci 890:41–50

    Google Scholar 

  • Messeter K, Nordstrom CH, Sundbarg G et al (1986) Cerebral hemodynamics in patients with acute severe head trauma. J Neurosurg 64:231–237

    PubMed  CAS  Google Scholar 

  • Michaud LJ, Rivara FP, Grady MS et al (1992) Predictors of survival and severity of disability after severe brain injury in children. Neurosurgery 31:254–264

    PubMed  CAS  Google Scholar 

  • Nakayama DK, Copes WS, Sacco WJ (1999) The effect of patient age upon survival in pediatric trauma. J Trauma 31:1521–1526

    Google Scholar 

  • Newton CR, Marsh K, Peshu N et al (1996) Perturbations of cerebral hemodynamics in Kenyans with cerebral malaria. Pediatr Neurol 15(1):41–49

    PubMed  CAS  Google Scholar 

  • Ng SC, Poon WS, Chan MT et al (2002) Is transcranial Doppler ultrasonography (TCD) good enough in determining CO2 reactivity and pressure autoregulation in head-injured patients? Acta Neurochir Suppl 81:125–127

    PubMed  CAS  Google Scholar 

  • Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET et al (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 87:59–64

    Google Scholar 

  • Nordstrom CH, Messeter K, Sundbarg G et al (1988) Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate therapy in severe traumatic brain lesions. J Neurosurg 68:424–431

    PubMed  CAS  Google Scholar 

  • Ogawa A, Sakurai Y, Kayama T et al (1989) Regional cerebral blood flow with age: changes in rCBF in childhood. Neurol Res 11:173–176

    PubMed  CAS  Google Scholar 

  • Pampiglione G (1971) Some aspects of development of cerebral function in mammals. Proc R Soc Med 64:492–495

    Google Scholar 

  • Park L, Gallo EF, Anrather J, Wang G, Norris EH, Paul J et al (2008) Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci USA 105:1073–1078

    PubMed  CAS  Google Scholar 

  • Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–191

    PubMed  CAS  Google Scholar 

  • Pecha T, Sharma D, Hoffman NG, Sookplung P, Curry P, Vavilala MS (2011) Hyperglycemia during craniotomy for adult traumatic brain injury. Anesth Analg 113(2):336–342

    PubMed  CAS  Google Scholar 

  • Pigula FA, Wald SL, Shackford SR et al (1993) The effect of hypotension and hypoxia on children with severe head injuries. J Pediatr Surg 28:310–316

    PubMed  CAS  Google Scholar 

  • Quint SR, Scremin OU, Sonnenschein RR et al (1980) Enhancement of cerebrovascular effect of CO2 by hypoxia. Stroke 11:286–289

    PubMed  CAS  Google Scholar 

  • Rosner MJ, Becker DP (1984) Origin and evolution of plateau waves. Experimental observations and a theoretical model. J Neurosurg 60(2):312–324

    PubMed  CAS  Google Scholar 

  • Rowney DA, Fairgrieve R, Bissonnette B (2002) Cerebrovascular carbon dioxide reactivity in children anaesthetized with sevoflurane. Br J Anaesth 88:357–361

    PubMed  CAS  Google Scholar 

  • Settergren G, Lindblad BS, Persson B (1980) Cerebral blood flow and exchange of oxygen, glucose ketone bodies, lactate, pyruvate and amino acids in anesthetized children. Acta Paediatr Scand 69:457–465

    PubMed  CAS  Google Scholar 

  • Severinghaus JW, Lassen N (1967) Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow. Circ Res 20:272–278

    PubMed  CAS  Google Scholar 

  • Sharples PM, Stuart AG, Matthews DS et al (1995a) Cerebral blood flow and metabolism in children with severe head injury. Part I: Relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 58:145–152

    PubMed  CAS  Google Scholar 

  • Sharples PM, Matthews DSF, Eyre JA (1995b) Cerebral blood flow and metabolism in children with severe head injuries. Part II: Cerebrovascular resistance and its determinants. J Neurol Neurosurg Psychiatry 58:153–159

    PubMed  CAS  Google Scholar 

  • Shaver E, Duhaime AC, Curtis M, Gennarelli LM, Barrett R (1996) Experimental acute subdural hematoma in infant piglets. Pediatr Neurosurg 25:123–129

    PubMed  CAS  Google Scholar 

  • Silverman BW (1985) Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J Roy Statist Soc 47:1–52

    Google Scholar 

  • Skippen P, Seear M, Poskitt K et al (1997) Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med 25:1402–1409

    PubMed  CAS  Google Scholar 

  • Stoyka WW, Schutz HH (1975) The cerebral response to sodium nitroprusside and trimethaphan controlled hypotension. Can Anaesth Soc J 22:275–283

    PubMed  CAS  Google Scholar 

  • Suz P, Vavilala MS, Souter M et al (2006) Clinical features of fever associated with poor outcome in severe pediatric traumatic brain injury. J Neurosurg Anesthesiol 18(1):5–10 [82]

    PubMed  Google Scholar 

  • Tontisirin N, Muangman SL, Suz P et al (2007) Early childhood sex differences in anterior and posterior cerebral blood flow velocity and autoregulation. Pediatrics 119:610–615

    Google Scholar 

  • Trabold F, Meyer PG, Blanot S et al (2004) The prognostic value of transcranial Doppler studies in children with moderate and severe head injury. Intensive Care Med 30(1):108–112

    PubMed  Google Scholar 

  • Vavilala MS, Dunbar PJ, Rivara FP et al (2001) Coagulopathy predicts poor outcome following head injury in children less than 16 years of age. J Neurosurg Anesthesiol 13:13–18

    PubMed  CAS  Google Scholar 

  • Vavilala MS, Lee LA, Lam AM (2002a) Cerebral blood flow and vascular physiology. Anesthesiol Clin North America 20:247–264

    PubMed  Google Scholar 

  • Vavilala MS, Newell DW, Junger E et al (2002b) Dynamic cerebral autoregulation in healthy adolescents. Acta Anaesthesiol Scand 46:393–397

    PubMed  CAS  Google Scholar 

  • Vavilala MS, Bowen A, Lam AM et al (2003a) Blood pressure and outcome after severe pediatric traumatic brain injury. J Trauma 55:1039–1044

    PubMed  Google Scholar 

  • Vavilala MS, Lee LA, Lam AM (2003b) The lower limit of cerebral autoregulation in children during sevoflurane anesthesia. J Neurosurg Anesthesiol 15:307–312

    PubMed  Google Scholar 

  • Vavilala MS, Lee LA, Boddu K et al (2004) Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med 5:257–263

    PubMed  Google Scholar 

  • Vavilala MS, Kincaid MS, Muangman SL et al (2005) Sex differences in cerebral blood flow velocity and autoregulation between the anterior and posterior circulations in healthy children. Pediatr Res 58:574–578

    PubMed  Google Scholar 

  • Vavilala MS, Muangman S, Tontisirin N et al (2006) Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Dev Neurosci 28:348–353

    PubMed  CAS  Google Scholar 

  • Vavilala MS, Muangman S, Waitayawinyu P et al (2007) Neurointensive care; impaired cerebral autoregulation in infants and young children early after inflicted traumatic brain injury: a preliminary report. J Neurotrauma 24:87–96

    PubMed  Google Scholar 

  • Vavilala MS, Tontisirin N, Udomphorn Y et al (2008) Hemispheric differences in cerebral autoregulation in children with moderate and severe traumatic brain injury. Neurocrit Care 9(1):45–54

    PubMed  Google Scholar 

  • Vink R, Faden AI, McIntosh TK (1988) Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy. J Neurotrauma 5:315–330

    PubMed  CAS  Google Scholar 

  • Visocchi M, Chiaretti A, Genovese O et al (2007) Haemodynamic patterns in children with posttraumatic diffuse brain swelling. A preliminary study in 6 cases with neuroradiological features consistent with diffuse axonal injury. Acta Neurochir (Wien) 149(4):347–356

    CAS  Google Scholar 

  • Wang YF, Tsirka SE, Strickland S, Stiege PE, Lipton SA (1998) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA difficient mice. Nat Med 4:228–231

    PubMed  CAS  Google Scholar 

  • Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980) Functional, morphological, and metabolic abnormalities of the cerebral microcircuit after concussive brain injury in cats. Circ Res 46:37–47

    PubMed  CAS  Google Scholar 

  • Wintermark M, Lepori D, Cotting J et al (2004) Brain Perfusion in children: Evolution with age assessed by quantitative perfusion computed tomography. Pediatrics 113:1642–1652

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica S. Vavilala MD .

Editor information

Editors and Affiliations

Glossary

CBF

Cerebral blood flow

CBFV

Cerebral blood flow velocity

CMRglu

Cerebral metabolic rate for glucose

CMRO2

Cerebral metabolic rate of oxygen

ICP

Intracranial pressure

MAP

Mean arterial pressure

SBP

Systolic blood pressure

TBI

Traumatic brain injury

TCD

Transcranial Doppler

VMCA

Middle cerebral artery velocity

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armstead, W.M., Vavilala, M.S. (2013). Age and Sex Differences in Cerebral Blood Flow and Autoregulation after Pediatric Traumatic Brain Injury. In: Kreipke, C., Rafols, J. (eds) Cerebral Blood Flow, Metabolism, and Head Trauma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4148-9_6

Download citation

Publish with us

Policies and ethics