Skip to main content

Inhibition of the Serine Proteases of the Complement System

  • Chapter
  • First Online:
Complement Therapeutics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 735))

Abstract

Proteases play important roles in human physiology and pathology. The complement ­system is a proteolytic cascade, where serine proteases activate each other by limited proteolysis in a strictly ordered manner. Serine proteases are essential in both the initiation and the amplification of the cascade. Since uncontrolled complement activation contributes to the development of serious disease conditions, inhibition of the complement serine proteases could be an attractive therapeutic approach. In this chapter, we give a brief overview of the major types of natural serine protease inhibitors and their role in controlling the complement cascade. A special emphasis is laid on C1-inhibitor, a natural complement protease inhibitor, which is approved for clinical use in hereditary angioedema (HAE). We also examine the potential of developing artificial complement protease inhibitors. Synthetic small-molecule drugs can be very efficient serine protease inhibitors, but they usually lack sufficient specificity. A promising approach to yield more specific compounds is the alteration of natural protease inhibitors through engineering or directed evolution resulting in new variants with fine-tuned specificity and enhanced affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrus G, Gál P, Kojima M, Szilágyi K, Balczer J, Antal J, Gráf L, Laich A, Moffatt BE, Schwaeble W, Sim RB, Závodszky P (2003) Natural substrates and inhibitors of mannan-binding lectin-associated serine protease-1 and -2: a study on recombinant catalytic fragments. J Immunol 170:1374–1382

    Article  CAS  PubMed  Google Scholar 

  • Beinrohr L, Harmat V, Dobó J, Lőrincz Z, Gál P, Závodszky P (2007) C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease. J Biol Chem 282:21100–21109

    Article  CAS  PubMed  Google Scholar 

  • Beinrohr L, Dobó J, Závodszky P, Gál P (2008) C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol Med 14:511–521

    Article  CAS  PubMed  Google Scholar 

  • Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204:433–451

    Article  CAS  PubMed  Google Scholar 

  • Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP (1988) The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 71:335–343

    CAS  PubMed  Google Scholar 

  • Buerke M, Murohara T, Lefer AM (1995) Cardioprotective effects of a C1 esterase inhibitor in myocardial ischemia and reperfusion. Circulation 91:393–402

    Article  CAS  PubMed  Google Scholar 

  • Buerke M, Schwertz H, Seitz W, Meyer J, Darius H (2001) Novel small molecule inhibitor of C1s exerts cardioprotective effects in ischemia-reperfusion injury in rabbits. J Immunol 167:5375–5380

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Davis AE III (2003) Complement regulatory protein C1 inhibitor binds to selectins and interferes with endothelial-leukocyte adhesion. J Immunol 171:4786–4791

    Article  CAS  PubMed  Google Scholar 

  • Chen CB, Wallis R (2004) Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. J Biol Chem 279:26058–26065

    Article  CAS  PubMed  Google Scholar 

  • Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, Vorup-Jensen T, Jensenius JC (2001) MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15:127–135

    Article  CAS  PubMed  Google Scholar 

  • Davis AE III, Mejia P, Lu F (2008) Biological activities of C1 inhibitor. Mol Immunol 45:4057–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AE III, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104:886–893

    Article  CAS  PubMed  Google Scholar 

  • Degn SE, Hansen AG, Steffensen R, Jacobsen C, Jensenius JC, Thiel S (2009) MAp44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. J Immunol 183:7371–7378

    Article  CAS  PubMed  Google Scholar 

  • Dobó J, Harmat V, Beinrohr L, Sebestyén E, Závodszky P, Gál P (2009) MASP-1, a promiscuous complement protease: structure of its catalytic region reveals the basis of its broad specificity. J Immunol 183:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Dommet RM, Klein N, Turner MW (2006) Mannose-binding lectin in innate immunity, past, present and future. Tissue Antigens 68:193–209

    Article  CAS  Google Scholar 

  • Endo Y, Matsushita M, Fujita T (2011) The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 43:705–712

    Article  CAS  PubMed  Google Scholar 

  • Epstein TG, Bernstein JA (2008) Current and emerging management options for hereditary angioedema. Drugs 68:2561–2573

    Article  CAS  PubMed  Google Scholar 

  • Farady CJ, Sun J, Darragh MR, Miller SM, Craik CS (2007) The mechanism of inhibition of antibody-based inhibitors of membrane-type serine protease 1 (MT-SP1). J Mol Biol 369:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattouch K, Bianco G, Speziale G, Sampognaro R, Lavalle C, Guccione F, Dioguardi P, Ruvolo G (2007) Beneficial effects of C1 esterase inhibitor in ST-elevation myocardial infarction in patients who underwent surgical reperfusion: a randomised double-blind study. Eur J Cardiothorac Surg 32:326–332

    Article  PubMed  Google Scholar 

  • Fujii S, Hitomi Y (1981) New synthetic inhibitors of C1r, C1 esterase, thrombin, plasmin, kallikrein and trypsin. Biochim Biophys Acta 661:342–345

    Article  CAS  PubMed  Google Scholar 

  • Gál P, Harmat V, Kocsis A, Bián T, Barna L, Ambrus G, Végh B, Balczer J, Sim RB, Náray-Szabó G, Závodszky P (2005) A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations. J Biol Chem 280:33435–33444

    Article  CAS  PubMed  Google Scholar 

  • Gál P, Dobó J, Závodszky P, Sim RBM (2009) Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol Immunol 46:2745–2752

    Article  CAS  PubMed  Google Scholar 

  • Ganesan R, Eigenbrot C, Wu Y, Liang WC, Shia S, Lipari MT, Kirchhofer D (2009) Unraveling the allosteric mechanism of serine protease inhibition by an antibody. Structure 17:1614–1624

    Article  CAS  PubMed  Google Scholar 

  • Gesuete R, Storini C, Fantin A, Stravalaci M, Zanier ER, Orsini F, Vietsch H, Mannesse ML, Ziere B, Gobbi M, De Simoni MG (2009) Recombinant C1 inhibitor in brain ischemic injury. Ann Neurol 66:332–342

    Article  CAS  PubMed  Google Scholar 

  • Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4804

    Article  CAS  PubMed  Google Scholar 

  • Gettins PGW, Olson ST (2009) Exosite determinants of serpin specificity. J Biol Chem 284:20441–20445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grütter MG, Priestle JP, Rahuel J, Grossenbacher H, Bode W, Hofsteenge J, Stone SR (1990) Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J 9:2361–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Halili MA, Ruiz-Gómez G, Le GT, Abbenante G, Fairlie DP (2009) Complement component C2, inhibiting a latent serine protease in the classical pathway of complement activation. Biochemistry 48:8466–8472

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Selman L, Palaniyar N, Ziegler K, Brandt J, Kliem A, Jonasson M, Skjoedt MO, Nielsen O, Hartshorn K, Jørgensen TJ, Skjødt K, Holmskov U (2010) Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity. J Immunol 185:6096–6104

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  CAS  PubMed  Google Scholar 

  • Héja D, Harmat V, Fodor K, Wilmanns M, Dobó J, Kékesi KA, Závodszky P, Gál P, Pál G (2012a) Monospecific inhibitors show that both mannan-binding lectin-associated serine protease (MASP)-1 and -2 are essential for lectin pathway activation and reveal structural plasticity of MASP-2. J Biol Chem 287:20290–20300

    Article  CAS  PubMed  Google Scholar 

  • Héja D, Kocsis A, Dobó J, Szilágyi K, Szász R, Závodszky P, Pál G, Gál P (2012b) Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci USA 10.1073/pnas.1202588109

    Article  CAS  PubMed  Google Scholar 

  • Holers VM (2008) The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 233:300–316

    Article  Google Scholar 

  • Iwaki D, Kanno K, Takahashi M, Endo Y, Matsushita M, Fujita T (2011) The role of mannose-binding lectin-associated serine protease-3 in activation of the alternative complement pathway. J Immunol 187:3751–3758

    Article  CAS  PubMed  Google Scholar 

  • Jackson RM, Russel RB (2000) The serine protease inhibitor canonical loop conformation: examples found in extracellular hydrolases, toxins, cytokines and viral proteins. J Mol Biol 296:325–334

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Wagner E, Zhang H, Frank MM (2001) Complement 1 inhibitor is a regulator of the alternative complement pathway. J Exp Med 194:1609–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan AP, Ghebrehiwet B (2010) The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol 47:2161–2169

    Article  CAS  PubMed  Google Scholar 

  • Kemper C, Hourcade DE (2008) Properdin: New roles in pattern recognition and target clearance. Mol Immunol 45: 4048–4056

    Article  CAS  PubMed  Google Scholar 

  • Kocsis A, Kékesi KA, Szász R, Végh BM, Balczer J, Dobó J, Závodszky P, Gál P, Pál G (2010) Selective inhibition of the lectin pathway of complement with phage display selected peptides against mannose-binding lectin-associated serine protease (MASP)-1 and -2: significant contribution of MASP-1 to lectin pathway activation. J Immunol 185:4169–4178

    Article  CAS  PubMed  Google Scholar 

  • Krem MM, Di Cera E (2002) Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci 27:67–74

    Article  CAS  PubMed  Google Scholar 

  • Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60:2427–2444

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M Jr (1986) Protein inhibitors of serine proteinases – mechanism and classification. Adv Exp Med Biol 199:1–17

    Article  CAS  PubMed  Google Scholar 

  • Lathem WW, Bergsbaken T, Welch RA (2004) Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157:H7. J Exp Med 199:1077–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn M, Banta E (2011) Ecallantide for the treatment of hereditary angioedema in adults. Clin Med Insights Cardiol 5:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markland W, Ley AC, Ladner RC (1996) Iterative optimization of high-affinity protease inhibitors using phage display. 2. Plasma kallikrein and thrombin. Biochemistry 35:8058–8067

    Article  CAS  PubMed  Google Scholar 

  • Marrero A, Duquerroy S, Trapani S, Goulas T, Guevara T, Andersen GR, Navaza J, Sottrup-Jensen L, Gomis-Rüth FX (2012) The crystal structure of human α(2)-macroglobulin reveals a unique molecular cage. Angew Chem Int Ed Engl 10.1002/anie.201108015

    Article  CAS  PubMed  Google Scholar 

  • Moller-Kristensen M, Thiel S, Sjoholm A, Matsushita M, Jensenius JC (2007) Cooperation between MASP-1 and MASP-2 in the generation of C3 convertase through the MBL pathway. Int Immunol 19:141–149

    Article  CAS  PubMed  Google Scholar 

  • Nayak A, Pedenekar L, Reid KB, Kishore U (2011) Complement and non-complement activating functions of C1q: a prototypical innate immune molecule. Innate Immun. doi:10.1177/1753425910396252

  • Neurath H (1984) Evolution of proteolytic enzymes. Science 224:350–357

    Article  CAS  PubMed  Google Scholar 

  • Nilsson SC, Sim RB, Lea SM, Fremeaux-Bacchi V, Blom AM (2011) Complement factor I in health and disease. Mol Immunol 48:1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Page MJ, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65:1220–1236

    Article  CAS  PubMed  Google Scholar 

  • Pike RN, Bottomley SP, Irving JA, Bird PI, Whisstock JC (2002) Serpins: finely balanced conformational traps. IUBMB Life 54:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pike RN, Buckle AM, le Bonniec BF, Church FC (2005) Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. FEBS J 272:4842–4851

    Article  CAS  PubMed  Google Scholar 

  • Puente XS, Sanchez LM, Gutierrez-Fernandez A, Velasco G, Lopez-Otin C (2005) A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 33:331–334

    Article  CAS  PubMed  Google Scholar 

  • Qu H, Ricklin D, Lambris JD (2009) Recent developments in low molecular weight complement inhibitors. Mol Immunol 47:185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Tolle DP, Barret AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi V, Bally I, Thielens NM, Esser AF, Arlaud GJ (1998) Baculovirus-mediated expression of truncated modular fragments from the catalytic region of human complement serine protease C1s. Evidence for the involvement of both complement control protein modules in the recognition of the C4 protein substrate. J Biol Chem 273:1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Rossi V, Cseh S, Bally I, Thielens NM, Jensenius JC, Arlaud GJ (2001) Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J Biol Chem 276:40880–40887

    Article  CAS  PubMed  Google Scholar 

  • Rossi V, Bally I, Ancelet S, Xu Y, Frémeaux-Bacchi V, Vivès RR, Sadir R, Thielens N, Arlaud GJ (2010) Functional characterization of the recombinant human C1 inhibitor serpin domain: insights into heparin binding. J Immunol 184:4982–4989

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Gómez G, Lim J, Halili MA, Le GT, Madala PK, Abbenante G, Fairlie DP (2009) Structure-activity relationships for substrate-based inhibitors of human complement factor B. J Med Chem 52:6042–6052

    Article  CAS  PubMed  Google Scholar 

  • Sardana N, Craig TJ (2011) Recent advances in management and treatment of hereditary angioedema. Pediatrics 128:1173–1180

    Article  PubMed  Google Scholar 

  • Schwaeble WJ, Lynch NJ, Clark JE, Marber M, Samani NJ, Ali YM, Dudler T, Parent B, Lhotta K, Wallis R, Farrar CA, Sacks S, Lee H, Zhang M, Iwaki D, Takahashi M, Fujita T, Tedford CE, Stover CM (2011) Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 108:7523–7528

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwertz H, Carter JM, Russ M, Schubert S, Schlitt A, Buerke U, Schmidt M, Hillen H, Werdan K, Buerke M (2008) Serine protease inhibitor nafamostat given before reperfusion reduces inflammatory myocardial injury by complement and neutrophil inhibition. J Cardiovasc Pharmacol 52:151–160

    Article  CAS  PubMed  Google Scholar 

  • Scott CJ, Taggart CC (2010) Biologic protease inhibitors as novel therapeutic agents. Biochimie 92:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. J Biol Chem 276:33293–33296

    Article  CAS  PubMed  Google Scholar 

  • Sim RB, Tsiftsoglou SA (2004) Proteases of the complement system. Biochem Soc Trans 32:21–27

    Article  CAS  PubMed  Google Scholar 

  • Skjoedt MO, Hummelshoj T, Palarasah Y, Honore C, Koch C, Skjodt K, Garred P (2010a) A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J Biol Chem 285:8234–8243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjoedt MO, Palarasah Y, Munthe-Fog L, Jie Ma Y, Weiss G, Skjodt K, Koch C, Garred P (2010b) MBL-associated serine protease-3 circulates in high serum concentrations predominantly in complex with Ficolin-3 and regulates Ficolin-3 mediated complement activation. Immunobiology 215:921–931

    Article  CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L (1989) Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J Biol Chem 264:11539–11542

    CAS  PubMed  Google Scholar 

  • Stover CM, Thiel S, Thelen M, Lynch NJ, Vorup-Jensen T, Jensenius JC, Schwaeble WJ (1999) Two constituents of the initiation complex of the mannan-binding lectin activation pathway of complement are encoded by a single structural gene. J Immunol 162:3481–3490

    CAS  PubMed  Google Scholar 

  • Szalai AJ, Digerness SB, Agrawal A, Kearney JF, Bucy RP, Niwas S, Kilpatrick JM, Babu YS, Volanakis JE (2000) The Arthus reaction in rodents: species-specific requirement of complement. J Immunol 164:463–468

    Article  CAS  PubMed  Google Scholar 

  • Tagawa T (2011) Protease inhibitor nafamostat mesilate attenuates complement activation and improves function of xenografts in a discordant lung perfusion model. Xenotransplantation 18:315–319

    Article  PubMed  Google Scholar 

  • Takahashi M, Endo Y, Fujita T, Matsushita M (1999) A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. Int Immunol 11:859–863

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Iwaki D, Kanno K, Ishida Y, Xiong J, Matsushita M, Endo Y, Miura S, Ishii N, Sugamura K, Fujita T (2008) Mannose-binding lectin (MBL)-associated serine protease (MASP)-1 contributes to activation of the lectin complement pathway. J Immunol 180:6132–6138

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Ishida Y, Iwaki D, Kanno K, Suzuki T, Endo Y, Homma Y, Fujita T (2010) Essential role of mannose-binding lectin-associated serine protease-1 in activation of the complement factor D. J Exp Med 207:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel S (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol 44:3875–3888

    Article  CAS  PubMed  Google Scholar 

  • Travins JM, Ali F, Huang H, Ballentine SK, Khalil E, Hufnagel HR, Pan W, Gushue J, Leonard K, Bone RF, Soll RM, DesJarlais RL, Crysler CS, Ninan N, Kirkpatrick J, Cummings MD, Huebert N, Molloy CJ, Gaul M, Tomczuk BE, Subasinghe NL (2008) Biphenylsulfonyl-thiophene-carboxamidine inhibitors of the complement component C1s. Bioorg Med Chem Lett 18:1603–1606

    Article  CAS  PubMed  Google Scholar 

  • Volanakis JE, Narayana SV (1996) Complement factor D, a novel serine protease. Protein Sci 5:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorup-Jensen T, Petersen SV, Hansen AG, Poulsen K, Schwaeble W, Sim RB, Reid KB, Davis SJ, Thiel S, Jensenius JC (2000) Distinct pathways of mannan-binding lectin (MBL)- and C1-complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2. J Immunol 165:2093–2100

    Article  CAS  PubMed  Google Scholar 

  • Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Bourcier T, Takahashi K, Shi L, Busche MN, Rother RP, Solomon SD, Ezekowitz RA, Stahl GL (2005) Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. J Immunol 175:541–546

    Article  CAS  PubMed  Google Scholar 

  • Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA (2010) Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J Biol Chem 285:24307–24312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Eigenbrot C, Liang WC, Stawicki S, Shia S, Fan B, Ganesan R, Lipari MT, Kirchhofer D (2007) Structural insight into distinct mechanisms of protease inhibition by antibodies. Proc Natl Acad Sci USA 104:19784–19789

    Article  PubMed  PubMed Central  Google Scholar 

  • Zani M-L, Moreau T (2010) Phage display as a powerful tool to engineer protease inhibitors. Biochemie 92:1689–1704

    Article  CAS  Google Scholar 

  • Ziccardi R (1985) Demonstration of the interaction of native C1 with monomeric immunoglobulins and C1 inhibitor. J Immunol 134:2559–2563

    CAS  PubMed  Google Scholar 

  • Zundel S, Cseh S, Lacroix M, Dahl MR, Matsushita M, Andrieu JP, Schwaeble WJ, Jensenius JC, Fujita T, Arlaud GJ, Thielens NM (2004) Characterization of recombinant mannan-binding lectin-associated serine protease (MASP)-3 suggests an activation mechanism different from that of MASP-1 and MASP-2. J Immunol 172:4342–4350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ányos Jedlik grant NKFP_07_1-MASPOK07, the Hungarian Scientific Research Fund (OTKA) grant NK77978, NK100834, K68408, NK81950 and NK100769 and the NDA grant KMOP-1.1.2-07/1-2008-0003 and the National Development Agency Grant KMOP-1.1.2-07/1-2008-0003 as well as by the European Union and the European Social Fund (TÁMOP) 4.2.1./B-09/KMR-2010-0003 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Gál .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gál, P., Dobó, J., Beinrohr, L., Pál, G., Závodszky, P. (2013). Inhibition of the Serine Proteases of the Complement System. In: Lambris, J., Holers, V., Ricklin, D. (eds) Complement Therapeutics. Advances in Experimental Medicine and Biology, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4118-2_2

Download citation

Publish with us

Policies and ethics