Skip to main content

Molecular Basis of Intervertebral Disc Degeneration

  • Chapter
  • First Online:
Regenerative Biology of the Spine and Spinal Cord

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 760))

Abstract

Intervertebral disc (IVD) degeneration is a disease of the discs connecting adjoining vertebrae in which structural damage leads to degeneration of the disc and surrounding area. Degeneration of the disc is considered to be a normal process of aging, but can accelerate faster than expected or be precipitated by other factors. The scientific community has come a long way in understanding the biological basis and interpreting the lifestyle implications of IVD degeneration. Of all the diseases of the intervertebral disc, degeneration is the most common and has earned much attention due to its diversity in presentation and potential multiorgan involvement. We will provide a brief overview of the anatomic, cellular, and molecular structure of the IVD, and delve into the cellular and molecular pathophysiology surrounding IVD degeneration. We will then highlight some of the newest developments in stem cell, protein, and genetic therapy for IVD degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kraemer J et al. Intervertebral Disk Diseases: Causes, Diagnosis, Treatment and Prophylaxis. New York: Georg Thieme Verlag KG, 2009:1.

    Google Scholar 

  2. Frymoyer JW. Lumbar disk disease: epidemiology. Instr Course Lect 1992; 41:217–223.

    CAS  PubMed  Google Scholar 

  3. Ala-Kokko L. Genetic risk factors for lumbar disc disease. Ann Med 2002; 34:42–47.

    Article  CAS  PubMed  Google Scholar 

  4. Battie MC, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences. Spine 2004; 29(23):2679–2690.

    Article  PubMed  Google Scholar 

  5. Kingsley JS. The Vertebrate Skeleton. London: Murray, 1925:22.

    Google Scholar 

  6. Armstrong JR. Lumbar Disc Lesions, 3rd ed. Edinburgh: Churchill Livingston, 1965:13.

    Google Scholar 

  7. Taylor JR. The development and adult structure of lumbar intervertebral discs. J Man Med 1990; 5:43–47.

    Google Scholar 

  8. Jayson MIV, Barks JS. Structural changes in the intervertebral disc. Ann Rheum Dis 1973; 32:10–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peacock A. Observations on the prenatal development of the intervertebral disc in man. J Anat 1951; 85:260–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hickey DS, Hukins DWL. X-ray diffraction studies of the arrangement of collagen fibers in human fetal intervertebral discs. J Anat 1980; 131:81–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hickey DS, Hukins DWL. Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 1980; 5:100–116.

    Article  Google Scholar 

  12. Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine 1990; 15:402–410.

    Article  CAS  PubMed  Google Scholar 

  13. Hastreiter D, Ozuna RM, Spector M. Regional variations in certain cellular characteristics in human lumbar intervertebral discs, including the presence of alpha-smooth muscle actin. J Orthrop Res 2001; 19(4): 597–604.

    Article  CAS  Google Scholar 

  14. Errington RJ, Puustjarvi K, White IR et al. Characterization of cytoplasm-filled processes in cells of the intervertebral disc. J Anat 1998; 192(Pt 3):369–378.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Duncan NA. Cell deformation and micromechanical environment in the intervertebral disc. J Bone Joint Surg Am 2006; 88(Suppl 2):47–51.

    PubMed  Google Scholar 

  16. Herkowitz HN. Fusion: Its current and future place in the degenerative lumbar spine. In: Wiesel SW et al., eds. The Lumbar Spine. Philadelphia: WB Saunders, 1996.

    Google Scholar 

  17. Hunter C, Matyas J, Duncan N. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 2003; 9:667–677.

    Article  CAS  PubMed  Google Scholar 

  18. Paesold G, Nerlich A, Boos N. Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 2007; 16:447–468.

    Article  PubMed  Google Scholar 

  19. Eyring EJ. The biochemistry and physiology of the intervertebral disk. Clin Orthop 1969; 67:16–28.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts S, Menage J, Urban PG. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989; 14:166–174.

    Article  CAS  PubMed  Google Scholar 

  21. Saunders JB deCm, Inman VT. Pathology of the intervertebral disk. Arch Surg 1940; 40:380–416.

    Article  Google Scholar 

  22. Coventry MB, Chormley RK, Kernohan JW. The intervertebral disc: its microscopic anatomy and pathology. Part I. Anatomy, development and physiology. J Bone Joint Surg 1945; 27:105–112.

    Google Scholar 

  23. Inoue H. Three-dimensional architecture of the lumbar intervertebral discs. Spine 1981; 6:138–146.

    Article  Google Scholar 

  24. Bushell GR, Gosh P, Taylor TKF et al. Proteoglycan chemistry of the intervertebral disks. Clin Orthop 1977; 129:115–123.

    Article  CAS  Google Scholar 

  25. McDevitt CA. Proteoglycans of the intervertebral disc. In: Ghosh P, ed. The Biology of the Intervertebral Disc, Vol. 1. Boca Raton: CRC Press, 1988:151–170.

    Google Scholar 

  26. Johnstone B, Bayliss MT. The large proteoglycans of the human intervertebral disc. Spine 1995; 20:674–684.

    Article  CAS  PubMed  Google Scholar 

  27. Urban J, Maroudas A. The chemistry of the intervertebral disc in relation to its physiological function. Clin Rheum Dis 1980; 6:51–76.

    Google Scholar 

  28. Hardingham T, Bayliss M. Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin Arthritis Rheum 1990; 20(3 Suppl 1):12–33.

    Article  CAS  PubMed  Google Scholar 

  29. Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev 1978; 58:255–315.

    Article  CAS  PubMed  Google Scholar 

  30. Bailey A, Herbert CM, Jayson MIV. Collagen of the intervertebral disc. In: Jayson MIV, ed. The Lumbar Spine and Backache. New York: Grune and Stratton, 1976:327–340.

    Google Scholar 

  31. Ghosh P, Bushell GK, Taylor TFK et al. Collagen, elastin, and noncollagenous protein of the intervertebral disk. Clin Orthop 1977; 129:123–132.

    Article  Google Scholar 

  32. Meachim G, Cornah MS. Fine structure of juvenile human nucleus pulposus. J Anat 1970; 107:337–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pearson CH, Happey F, Naylor A et al. Collagens and associated glycoproteins in the human intervertebral disc. Ann Rheum Dis 1972; 31:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stevens FS, Jackson DS, Broady K. Protein of the human intervertebral disc. The association of collagen with a protein fraction having an unusual amino acid composition. Biochim Biophys Acta 1968; 160:435–446.

    Article  Google Scholar 

  35. Nerlich AG, Schaaf R, Walchli B et al. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J 2007; 16(4):547–555.

    Article  PubMed  Google Scholar 

  36. Johnson WE, Caterson B, Eisenstein SM et al. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine 2005; 30(10):1139–1147.

    Article  PubMed  Google Scholar 

  37. Botsford DJ, Esses SI, Ogilvie-Harris DJ. In vivo diurnal variation in intervertebral disc volume and morphology. Spine 1994; 19(8):935–940.

    Article  CAS  PubMed  Google Scholar 

  38. Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 2004; 37(2):213–221.

    Article  PubMed  Google Scholar 

  39. McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 1996; 55(12):880–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine 2004; 29(23): 2700–2709.

    Article  PubMed  Google Scholar 

  41. Rajasekaran S, Naresh Baby J, Arun R et al. ISSLS prize winner. A study of diffusion in human lumbar discs. Spine 2004; 29:2654–2667.

    Article  CAS  PubMed  Google Scholar 

  42. Butler WF. Comparative anatomy and development of the mammalian disc. In: Gosh P, ed. The Biology of the Intervertebral Disc. Boca Raton: CRC Press, 1989:8–108.

    Google Scholar 

  43. Stevens JW, Kurriger GK, Carter AS et al. CD44 expression in the developing and growing rat intervertebral disc. Dev Dyn 2000; 219:381.

    Article  CAS  PubMed  Google Scholar 

  44. Videman T, Battie MC. Epidemiology of disc disease. In: Wiesel, SW, Weinstein JN, Herkowitz HN et al eds. The Lumbar Spine. Philadelphia,: W.B. Saunders, 1996:16–27.

    Google Scholar 

  45. Praemer AP, Furner S, Rice DP. Musculoskeletal Conditions in the United States. Park Ridge: American Academy of Orthoscopic Surgery, 1999.

    Google Scholar 

  46. Butler D, Trafimow JH, Andersson GB et al. Discs degenerate before facets. Spine 1990; 15:111.

    Article  CAS  PubMed  Google Scholar 

  47. Bayliss MT, Johnstone B, O’Brien JP. Proteoglycan synthesis in the human intervertebral disc: Variation with age, region and pathology. Spine 1988; 13:972–981.

    Article  CAS  PubMed  Google Scholar 

  48. Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 1999; 246:129–137.

    Article  CAS  PubMed  Google Scholar 

  49. Maroudas A, Stockwell RA, Nachemson A et al. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 1975; 120:113–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao CQ, Wang LM, Jiang LS et al. The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 2007; 6:247–261.

    Article  PubMed  Google Scholar 

  51. Urban MR, Fairbank JC, Bibby SR et al. Intervertebral disc composition in neuromuscular scoliosis: changes in cell density and glycosaminoglycan concentration at the curve apex. Spine 2001; 26(6):610–617.

    Article  CAS  PubMed  Google Scholar 

  52. Trout JJ, Buckwalter JA, Moore KC. Ultrastructure of the human intervertebral disc. II. Cells of the nucleus pulposus. Anat Rec 1982; 204:307–314.

    Article  CAS  PubMed  Google Scholar 

  53. Bernick, S, Cailliet, R. Vertebral end-plate changes with aging of human vertebrae. Spine 1982; 7: 97–102.

    Article  CAS  PubMed  Google Scholar 

  54. Bibby SR, Fairbank JC, Urban MR et al. Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 2002; 27:2220–2228.

    Article  PubMed  Google Scholar 

  55. Roberts S, Urban, JP, Evans H et al. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 1996; 21:415–420.

    Article  CAS  PubMed  Google Scholar 

  56. Urban MR, Fairbank JC, Etherington PJ et al. Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine 2001; 26:984–990.

    Article  CAS  PubMed  Google Scholar 

  57. Gruber HE, Hanley EN Jr. Analysis of aging and degeneration of the human intervertebral disc: comparison of surgical specimens with normal controls. Spine 1998; 23(7):751–757.

    Article  CAS  PubMed  Google Scholar 

  58. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995; 20:1307–1314.

    Article  CAS  PubMed  Google Scholar 

  59. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–636.

    Article  CAS  PubMed  Google Scholar 

  60. Roberts S, Evans EH, Kletsas D et al. Senescence in human intervertebral discs. Eur. Spine J 2006; 15(Suppl 3):S312–316.

    Article  PubMed Central  Google Scholar 

  61. Gruber HE, Ingram JA, Norton HJ et al. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated b-galactosidase in human and sand rat discs. Spine 2007; 32:321–327.

    Article  PubMed  Google Scholar 

  62. Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 2007; 9:R45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Campisi J. The biology of replicative senescence. Eur J Cancer 1997; 33:703–709.

    Article  CAS  PubMed  Google Scholar 

  64. Chiu CP, Harley CB. Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc Soc Exp Biol Med 1997; 214:99–106.

    Article  CAS  PubMed  Google Scholar 

  65. Johnson WE, Eisenstein SM, Roberts S. Cell cluster formation in degenerate lumbar discs associated with increased disc cell proliferation. Connect Tissue Res 2001; 42:197–207.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Q, Fischer A, Reagan JD et al. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92:4337–4341.

    Article  CAS  PubMed  Google Scholar 

  67. Dai SM, Shan ZZ, Nakamura H et al. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement if caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum 2006; 54:818–831.

    Article  CAS  PubMed  Google Scholar 

  68. Homma Y, Tsunoda M, Kasai H. Evidence for the accumulation of oxidative stress during cellular ageing of human diploid fibroblasts. Biochem Biophys Res Commun 1994; 203:1063–1068.

    Article  CAS  PubMed  Google Scholar 

  69. Martin JA, Brown TD, Heiner AD et al. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res 2004; 427 Suppl:S96–103.

    Article  Google Scholar 

  70. Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 2005; 7(4):732–R745.

    Article  CAS  Google Scholar 

  71. Nerlich AG, Schleicher ED, Boos N. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 1997; 22:2781–2795.

    Article  CAS  PubMed  Google Scholar 

  72. Pritzker KP. Aging and degeneration in the lumbar intervertebral disc. Orthop Clin North Am 1977; 8: 66–77.

    CAS  PubMed  Google Scholar 

  73. Tolonen J, Gronblad M, Vanharanta H et al. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor-B, fibroblast growth factor and platelet-derived growth factor. Eur Spine J 2006; 15:588–596.

    Article  PubMed  Google Scholar 

  74. Johnson WE, Roberts S. Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat 2003; 203:605–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kang JD, Stefanovic-Racic M, McIntyre LA et al. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2 and matrix metalloproteinases, Spine 1997; 22:1065–1073.

    Article  CAS  PubMed  Google Scholar 

  76. Handa T, Ishihara H, Oshima H et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 1997; 22:1085–1091.

    Article  CAS  PubMed  Google Scholar 

  77. Adams MA, McNally DS, Dolan P. ’stress’ distributions inside intervertebral discs: the effects of age and degeneration. J Bone Joint Surg Br 1996; 78:965–972.

    Article  CAS  PubMed  Google Scholar 

  78. Wang YJ, Shi W, Lu WW et al. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model. Spine 2006; 31:1532–1538.

    Article  PubMed  Google Scholar 

  79. Holm SH. Nutritional and pathophysiologic aspects of the lumbar intervertebral disc. In: Weisel SW, Weinstein JN, Herkowitz HN et al, eds. The Lumbar Spine. Philadelphia: W.B. Saunders, 1996:285–310.

    Google Scholar 

  80. DePalma AF, Rothman RH. The Intervertebral Disc. Philadelphia: W.B. Saunders, 1970.

    Google Scholar 

  81. Antoniou J, Steffen T, Nelson F et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing and degeneration. J Clin Invest 1996; 98(4):996–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krag MH, Sroussi RE, Wilder DG et al. Internal displacement distribution from in vitro loading of human thoracic and lumbar spinal motion segments: Experimental results and theoretical predictions. Spine 1987; 12:1001.

    Article  CAS  PubMed  Google Scholar 

  83. Garfin SR, Herkowitz HN. Lumbar disc degeneration: Normal aging or a disease process? In: Wiesel SW, Weinstein JN, Herkowitz HN et al, eds. The Lumbar Spine. Philadelphia: W.B. Saunders, 1996.

    Google Scholar 

  84. Iatridis JC, Mente PL, Stokes IA et al. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 1999; 24:996.

    Article  CAS  PubMed  Google Scholar 

  85. Lotz JC, Colliou OK, Chin JR et al. Compression-induced degeneration of the intervertebral disc: An in vivo mouse model and finite-element study. Spine 1998; 23:2493.

    Article  CAS  PubMed  Google Scholar 

  86. DeGroot J, Verzijl, N. Wenting-Van Wijk MJ et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 2004; 50(4):1207–1215.

    Article  CAS  PubMed  Google Scholar 

  87. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine 2006; 31:2151–2161.

    Article  PubMed  Google Scholar 

  88. Duance VC, Crean JK, Sims TJ et al. Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine 1998; 23(23):2545–2551.

    Article  CAS  PubMed  Google Scholar 

  89. Weiler C, Nerlich AG, Zipperer J et al. SSE Award Competition in Basic Science. Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 2002; 11(4):308–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nerlich AG, Bachmeier BE, Boos N. Expression of fibronectin and TGF-beta1 mRNA and protein suggest altered regulation of extracellular matrix in degenerated disc tissue. Eur Spine J 2005; 14(1):17–26.

    Article  PubMed  Google Scholar 

  91. Goupille P, Jayson MI, Valat JP et al. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 1998; 23:1612–1626.

    Article  CAS  PubMed  Google Scholar 

  92. Roberts S, Caterson B, Menage J et al. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 2000; 25:2005–3013.

    Article  Google Scholar 

  93. Sztrolovics R, Alini M, Roughley PJ et al. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 1997; 326:235–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Le Maitre C, Freemont A, Hoyland J. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 2004; 204:47–54.

    Article  PubMed  CAS  Google Scholar 

  95. Ariga K, Yonenobu K, Nakase T et al. Localization of cathespins D, K, and L in degenerated human intervertebral discs. Spine 2001; 26:2666–2672.

    Article  CAS  PubMed  Google Scholar 

  96. Freemont AJ, Watkins A, Le Maitre C et al. Current understanding of cellular and molecular events in intervertebral disc degeneration: Implications for therapy. J Pathol 2002; 196:374–379.

    Article  CAS  PubMed  Google Scholar 

  97. Nishida Y, D’Souza AL, Thonar EJ et al. Stimulation of hyaluronan metabolism by interleukin-1alpha in human articular cartilage. Arthritis Rheum 2000; 43:1315–1326.

    Article  CAS  PubMed  Google Scholar 

  98. Van Den Berg WB. The role of cytokines and growth factors in cartilage destruction in osteoarthritis and rheumatoid arthritis. Z Rheumatol 1999; 58:136–141.

    Article  PubMed  Google Scholar 

  99. Pattison S, Melrose J, Ghosh P et al. Regulation of gelatinase-A (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by Transforming Growth Factor-beta(1)and insulin like growth factor-I. Cell Biol Int 2001; 25:679–89.

    Article  CAS  PubMed  Google Scholar 

  100. Yoon SJ, Park K, Kim J et al. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 2004; 29:2603–11.

    Article  PubMed  Google Scholar 

  101. Li Y, Tew S, Russell A et al. Transduction of passaged human articular chondrocytes with adenoviral, retroviral and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng 2004; 10:575–84.

    Article  CAS  PubMed  Google Scholar 

  102. Kawaguchi YR, Osada M, Kanamori H et al. Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 1999; 24:2456–60.

    Article  CAS  PubMed  Google Scholar 

  103. Doege K, Coulter S, Meek L et al. A human-specific polymorphism in the coding region of the aggrecan gene. Variable number of tandem repeats produce a range of core protein sizes in the general population. J Biol Chem 1997; 272:13974–13979.

    Article  CAS  PubMed  Google Scholar 

  104. Seki S, Kawaguchi Y, Chiba K et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 2005; 37:607–12.

    Article  CAS  PubMed  Google Scholar 

  105. Yang XF. Immunology of stem cells and cancer stem cells. Cell Mol Immunol 2007; 4:161–171.

    CAS  PubMed  Google Scholar 

  106. Winter A, Breit S, Parsch D et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. A rthritis Rheum 2003; 48:418–429.

    Article  CAS  Google Scholar 

  107. Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J 2006; 15(Suppl 3):S406–413.

    Article  Google Scholar 

  108. Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99:8932–8937.

    Article  CAS  PubMed  Google Scholar 

  109. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006; 5:91–116.

    Article  CAS  PubMed  Google Scholar 

  110. Sakai D, Mochida J, Iwashina T et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006; 27:335–45.

    Article  CAS  PubMed  Google Scholar 

  111. Richardson SM, Curran JM, Chen R et al. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. Biomaterials 2006.

    Google Scholar 

  112. Cheung KM, Ho G, Leung VY et al. The effect of severity of disc degeneration on mesenchymal stem cells’ ability to regenerate the intervertebral disc: a rabbit model. Eur Cell Mater 2005; 10(Suppl 3):45.

    Google Scholar 

  113. Asahina I, Sampath TK, Hauschka PV. Human osteogenic protein-1 induces chondroblastic, osteoblastic and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 1996; 222:38–47.

    Article  CAS  PubMed  Google Scholar 

  114. Muschik M, Schlenzka D, Ritsila V et al. Experimental anterior spine fusion using bovine bone morphogenic protein: a study in rabbits. J Orthop Sci 2000; 5:165–170.

    Article  CAS  PubMed  Google Scholar 

  115. Kato F. Experimental study of chemical spinal fusion in the rabbit by means of bone morphogenic protein. Nippon Seikeigeka Dakkai Zasshmi 1990; 64:442–452.

    CAS  Google Scholar 

  116. An HS, Takegami K, Kamada H et al. Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine 2005; 30(1):25–31; discussion 31–2.

    Article  PubMed  Google Scholar 

  117. Takegami K, An HS, Kumano F et al. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 2005; 5:231–238.

    Article  PubMed  Google Scholar 

  118. Li X, Leo BM, Beck G et al. Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine 2004; 29:2229–2234.

    Article  PubMed  Google Scholar 

  119. Evans C. Potential biologic therapies for the intervertebral disc. J Bone Joint Surg Am 2006; 88 Suppl 2:95–98.

    PubMed  Google Scholar 

  120. Nishida T. Kinetics of tissue and serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 in intervertebral disc degeneration and disc herniation. Kurume Med J 1999; 46:39–50.

    Article  CAS  PubMed  Google Scholar 

  121. Paul R, Haydon RC, Cheng H et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 2003; 28:755–763.

    PubMed  PubMed Central  Google Scholar 

  122. Wallach CJ, Sobajima S, Watanabe Y et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 2003; 28:2331–2337.

    Article  PubMed  Google Scholar 

  123. Cepko CS, Fields-Berry E, Ryder C et al. Lineage analysis using retroviral vectors. Curr Top Dev Biol 1998; 36:51–74.

    Article  CAS  PubMed  Google Scholar 

  124. Johnston JM, Gasmi L, Lim J et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 1999; 73:4991–5000.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med 2004; 6(Suppl 1): S164–71.

    Article  CAS  Google Scholar 

  126. Hacein-Bey-Abina SC, Von Kalle M, Schmidt M et al. LMO2-associated clonal T-cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302:415–419.

    Article  CAS  PubMed  Google Scholar 

  127. Wallach CJ. Kim S, Sobajima C et al. Safety assessment of intradiscal gene transfer: a pilot study. Spine J 2006; 6:107–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Gopal, D., Ho, A.L., Shah, A., Chi, J.H. (2012). Molecular Basis of Intervertebral Disc Degeneration. In: Jandial, R., Chen, M.Y. (eds) Regenerative Biology of the Spine and Spinal Cord. Advances in Experimental Medicine and Biology, vol 760. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4090-1_8

Download citation

Publish with us

Policies and ethics