Skip to main content

Medical Implant Corrosion: Electrochemistry at Metallic Biomaterial Surfaces

  • Chapter
  • First Online:
Degradation of Implant Materials

Abstract

Metallic biomaterials represent the class of materials with the largest use in medical devices in humans today. This fact will likely continue for decades to come because of the unique combination of strength, wear resistance, and corrosion resistance. However, metallic biomaterials also pose unique and specific concerns related to electrochemical behavior in the body. This chapter will focus on the elements of most importance in understanding the complex interactions present in the human body during corrosion of metallic implants. The concepts associated with oxide films and their interaction with the biological, mechanical, and electrochemical environments are discussed to provide insight into why corrosion is a critically important factor in the long-term performance of devices. Mechanically assisted corrosion in the biological system is discussed in terms of the structural, electrochemical, and biological interactions, and the idea of electrochemical history is presented to explain why such severe evidence of corrosion is observed in vivo. Finally, specific examples of mechanically assisted corrosion in vivo (or biotribocorrosion) are presented, and recent observations concerning the important role the reduction half-cell plays in the biological response to corrosion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechtol CO, Fergeson AB, Laing PG (1959) Metals in engineering in bone and joint surgery. William and Wilkins, Baltimore

    Google Scholar 

  2. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692

    Article  CAS  Google Scholar 

  3. Craig RG (1989) Restorative dental materials, 8th edn. Mosby, St. Louis

    Google Scholar 

  4. Gilbert JL (2006) Basic science: metals. In: Callaghan J, Rubash H, Rosenberg A (eds) The adult hip, 2nd edn. Lippencott-Raven, New York

    Google Scholar 

  5. Laing PG, Furgeson AB, Hodge ES (1967) Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res 1:135–149

    Article  CAS  Google Scholar 

  6. Bearinger JP, Orme CA, Gilbert JL (2001) Direct observation of hydration of TiO2 on Ti using AFM: freely corroding versus potentiostatically held. Surf Sci 491:370–387

    Article  CAS  Google Scholar 

  7. Bearinger JP, Orme CA, Gilbert JL (2003) In situ imaging and impedance measurements of titanium surfaces using AFM and SPIS. Biomaterials 24(11):1837–1852

    Article  CAS  Google Scholar 

  8. Bearinger JP, Orme CA, Gilbert JL (2003) Effect of hydrogen peroxide on titanium surfaces: in situ imaging and step polarization impedance spectroscopy of commercially pure and Ti-6Al-4V. J Biomed Mater Res 67A(3):702–712

    Article  CAS  Google Scholar 

  9. Gilbert JL, Bai Z, Bearinger J, Megremis S (2004) Dynamics of oxide films on metallic biomaterials. In: Shrivastava S (ed) Proceedings of the ASM conference on medical device materials, Anaheim, CA, September, pp 139–143

    Google Scholar 

  10. Ehrensberger MT, Gilbert JL (2010) The effect of static applied potential on the 24 hour impedance behavior of commercially pure titanium in simulated biological conditions. J Biomed Mater Res 93B(1):106–112

    CAS  Google Scholar 

  11. Jacobs JJ, Gilbert JL, Urban RM (1998) Current concepts review: corrosion of metal orthopaedic implants. J Bone Joint Surg 80A(2):268–282

    Google Scholar 

  12. Witte F, Eliezer A (2012) Biodegradable metals. In: Eliaz N (ed) Degradation of implant materials. Springer, New York

    Google Scholar 

  13. Gilbert JL, Zarka L, Chang E, Thomas C (1998) The reduction half-cell in biomaterials corrosion: oxygen concentration profiles near and cell response to polarized titanium. J Biomed Mater Res 42:321–330

    Article  CAS  Google Scholar 

  14. Ehrensberger M, Sivan S, Gilbert JL (2010) Titanium is NOT “The Most Biocompatible Metal” under cathodic potentials: the relationship between voltage and MC3T3 pre-osteoblast behavior on electrically polarized cpTi surfaces. J Biomed Mater Res 93A(4):1500–1509

    CAS  Google Scholar 

  15. Haeri M, Gilbert JL (2010) Cellular response to anodic and cathodic surface voltage, and metal ion release in polarized CoCr biomedical alloy. In: Gilbert JL (ed) Proceedings of 2009 conference on materials and processes for medical devices. ASM International, Metal Park, OH

    Google Scholar 

  16. Gettens RT, Gilbert JL (2008) Fibrinogen adsorption onto 316L stainless steel under polarized conditions. J Biomed Mater Res 85(1):176–187

    Article  Google Scholar 

  17. Jones DA (1992) Principles and prevention of corrosion. Macmillan, New York

    Google Scholar 

  18. Kalbacova M, Roessler S, Hempel U, Tsaryk R, Peters K, Scharnweber D, Kirkpatrick J, Deiter P (2007) The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages. Biomaterials 28:3263–3272

    Article  CAS  Google Scholar 

  19. Stankovich MT, Bard AJ (1978) The electrochemistry of proteins and related substances, part III: bovine serum albumin. J Electroanal Chem 86:189

    Article  CAS  Google Scholar 

  20. Kumsata C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48:4666–4676

    Article  Google Scholar 

  21. Aubrey S, Burlina F, Dupont E, Delaroche D, Joliot A, Lavielle S, Chassaing G, Sagan S (2009) Cell-surface thiols affect cell entry of disulfide-conjugated peptides. FASEB J 23:2956–2967

    Article  Google Scholar 

  22. Shin JY, Shin JI, Kim JS, Yang YS, Shin YK, Kim KK, Lee S, Kweon DH (2009) Disulfide bond as a structure determinant of prior protein membrane insertion. Mol Cells 27(6):673–680

    Article  CAS  Google Scholar 

  23. Lassing I, Schmitzberger F, Bjornstedt M, Holmgren A, Norland P, Schutt CA, Lingberg U (2007) Molecular and structural basis for redox regulation of b-actin. J Mol Biol 370:331–348

    Article  CAS  Google Scholar 

  24. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symnos M, Borrello S, Galeotti T, Ramponi G (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161(5):933–944

    Article  CAS  Google Scholar 

  25. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  26. Gilbert JL (2006) Mechanically assisted corrosion of metallic biomaterials. In: ASM handbook, vol 13C, Corrosion. ASM International, Metals Park, OH, pp 826–836

    Google Scholar 

  27. Gilbert JL (2011) Electrochemical behaviour of metals in the biological milieu, chapter 13. In: Ducheyne P, Healy KE, Kirkpatrick J (eds) Comprehensive biomaterials. Elsevier, London

    Google Scholar 

  28. Cabrera N, Mott NF (1948) Theory of the oxidation of metals. Rep Prog Phys 12:163

    Article  Google Scholar 

  29. Gunthershultze A, Betz H (1932) Cold temperature glow Kaltes Temperatur leuchten Zeitschrift fur Physik 74(9–10):681–691

    Google Scholar 

  30. Goldberg S, Gilbert JL (2001) Transient electric fields induced by mechanically assisted corrosion of Ti-6Al-4V. J Biomed Mater Res 56:184–194

    Article  CAS  Google Scholar 

  31. Willert HG, Broback LG, Buchhorn GH et al (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Relat Res (333):51–57

    Google Scholar 

  32. Ratner B, Hoffman A, Schoen F, Lemons J (1996) Biomaterials science, 2nd edn. Academic, New York, pp 249–252

    Google Scholar 

  33. Pan J, Thierrry D, Leygraf C (1996) Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: blue coloration and clinical relevance. J Biomed Mater Res 30:393–402

    Article  CAS  Google Scholar 

  34. Chandrasekaran N, Bai Z, Gilbert JL (2006) Titanium electrochemistry in the presence of the inflammatory species H2O2. Transactions of the Society for Biomaterials Annual Meeting, Pittsburgh, PA

    Google Scholar 

  35. Rodrigues DC, Urban RM, Jacobs JJ, Gilbert JL (2009) Severe corrosion and hydrogen embrittlement in vivo in Ti-6Al-4V modular body hip stems. J Biomed Mater Res 88B(1):206–219

    Article  CAS  Google Scholar 

  36. Piehler HR, Portnoff MA, Sloter LE, Vegdahl EJ, Gilbert JL, Weber MJ (1985) Corrosion-fatigue performance of hip nails: the influence of materials and design. In: Fraker AC, Griffin CD (eds) ASTM special technical publication 859. American Society for Testing and Materials, Philadelphia, pp 93–104

    Google Scholar 

  37. Flemming CAC, Brown SA, Payer JH (1994) Mechanical testing for fretting corrosion of modular total hip tapers. In: Kambic HE, Yokobori AT (eds) Biomaterials mechanical properties. ASTM special technical publication 1173. American Society for Testing and Materials, Philadelphia, pp 156–166

    Google Scholar 

  38. Gilbert JL, Buckley CA, Jacobs JJ (1993) In-vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations: the effect of crevice, stress, motion and alloy coupling. J Biomed Mater Res 27(12):1533–1544

    Article  CAS  Google Scholar 

  39. Halwani DO, Anderson PG, Brott BC, Anayiotos AS, Lemons JE (2010) Clinical device-related article surface characterization of explanted endovascular stents: evidence of in vivo corrosion. J Biomed Mater Res B Appl Biomater 95B(1):225–238

    Article  CAS  Google Scholar 

  40. Landholt D, Mischler S, Stemp M (2001) Electrochemical methods in tribocorrosion: a critical review. Electrochem Acta 46:3913–3929

    Article  Google Scholar 

  41. Barril S, Mischler S, Landolt D (2005) Electrochemical effects on the fretting corrosion of Ti6Al4V in 0.9% sodium chloride solution. Wear 259:282–291

    Article  CAS  Google Scholar 

  42. Hiromoto S, Mischler S (2006) The influence of proteins on the fretting-corrosion behavior of a Ti6Al4V alloy. Wear 261:1002–1011

    Article  CAS  Google Scholar 

  43. Mischler S (2008) Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol Int 41:573–583

    Article  CAS  Google Scholar 

  44. Gilbert JL, Mehta M, Pinder B (2009) In-vitro fretting crevice corrosion of stainless steel-cobalt chrome modular hip stems: effect of material, assembly and offset. J Biomed Mater Res 88B(1):162–173

    Article  CAS  Google Scholar 

  45. Gilbert JL, Lam B (2009) Polarization behavior of Ti-6Al-4V, CoCr, and 316L stainless steel during manual abrasion in pH 7.4 and pH 2 PBS. In: Gilbert JL (ed) Proceedings of 2009 MPMD conference, Minneapolis, MN. ASM International, Metals Park, OH

    Google Scholar 

  46. Shams El Din AM, Hammond AA (1988) Oxide film formation and thickness on titaniumin water. Thin Solid Films 167:269–280

    Article  Google Scholar 

  47. Haeri M, Gilbert JL (2011) The voltage-dependent electrochemical impedance spectroscopy of CoCrMo medical alloy using time-domain techniques: generalized Cauchy-Lorentz, and KWW-Randles functions describing non-ideal interfacial behavior. Corros Sci 53(2):582–588

    Article  CAS  Google Scholar 

  48. Gettens RT, Gilbert JL (2009) The electrochemical impedance of polarized 316L stainless steel: structure–property-adsorption correlation. J Biomed Mater Res 90A(1):121–132

    Article  CAS  Google Scholar 

  49. Gilbert JL, Buckley CA, Lautenschlager EP (1996) Titanium oxide fracture and repassivation: the effect of potential, pH and aeration. In: Brown SA, Lemons J (eds) Medical applications of titanium and its alloys. The materials and biological issues, ASTM special technical publication 1272. American Society for Testing and Materials, Philadelphia, PA, pp 199–215

    Chapter  Google Scholar 

  50. Goldberg JR, Lautenschlager EP, Gilbert JL (1997) Electrochemical response of CoCrMo to high speed fracture of its metal oxide using an electrochemical scratch test method. J Biomed Mater Res 37(2):421–433

    Article  CAS  Google Scholar 

  51. Goldberg JR, Gilbert JL (2004) The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys. Biomaterials 25(5):851–864

    Article  CAS  Google Scholar 

  52. Jones D, Marsh JL, Nepola JV, Jacobs JJ, Skipor AK, Urban R, Gilbert JL, Buckwalter J (2001) Focal osteolysis at the junctions of a modular stainless steel femoral intramedulary nail. J Bone Joint Surg 83-A(4):537–548

    CAS  Google Scholar 

  53. Kwon YM, Glyn-Jones S, Simpson DJ, Kamali A, McLardy-Smith P, Gill HS, Murray DW (2010) In vivo wear analysis of metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint Surg 92(4):356–361

    Google Scholar 

  54. Kwon YM, Ostlere SJ, McLardy-Smith J, Athanasou NA, Gill HS, Murray DW (2011) Assymptomatic pseudotumors after metal-on-metal hip resurfacing arthroplasty. J Arthroplasty 26(4):511–518

    Article  Google Scholar 

  55. Aulisa L, Di Benedetto A, Vinciguerra A, Lorini G, Tranquilli-Leali P (1982) Corrosion of the harrington’s instrumentation and biological behaviour of the rod-human spine system. Biomaterials 3(4):246–248

    Article  CAS  Google Scholar 

  56. Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T, Moriya H (2005) Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Sci 10(2):200–205

    Article  CAS  Google Scholar 

  57. Vieweg U, van Roost D, Wolf HK, Schyma CA, Schramm J (1999) Corrosion on an internal spinal fixator system. Spine 24(10):946

    Article  CAS  Google Scholar 

  58. Del Rio J, Beguiristain J, Duart J (2007) Metal levels in corrosion of spinal implants. Eur Spine J 16(7):1055–1061

    Article  Google Scholar 

  59. Cohen J, Lindenbaum B (1968) Fretting corrosion in orthopaedic implants. Clin Orthop Relat Res (61):167–178

    Google Scholar 

  60. Weinstein AM, Spires WP, Klawitter JJ, Clemow AJT, Edmunds JO (1979) Orthopaedic implant retrieval and analysis study. In: Syrett BC, Acharya A (eds) Corrosion and degradation of implant materials, ASTM STP 684. American Society for Testing and Materials, Philadelphia, PA, pp 212–228

    Chapter  Google Scholar 

  61. Brown SA, Merritt K (1983) Fretting corrosion of plates and screws: an in vitro test method. In: Fraker AC, Griffin CD (eds) Corrosion and degradation of implant materials. ASTM STP 859. American Society for Testing and Materials, Philadelphia, PA, pp 105–116

    Google Scholar 

  62. Wright G, Sporer S, Urban RM, Jacobs JJ (2010) Fracture of a modular femoral neck after total hip arthroplasty: a case report. J Bone Joint Surg A 92:1518–1521

    Article  Google Scholar 

  63. Urban RM, Gilbert JL, Hall DJ, Levin BR, Sporer SM, Galante JO, Jacobs JJ (2010) Fretting corrosion and fracture of modular neck-body junctions in hip replacement femoral components. J Bone Joint Surg Am 92(6):1518–1521

    Article  Google Scholar 

  64. Lackstein D, Eliaz N, Levi O, Backstein D, Kosashvili Y, Safir O, Gross AE (2011) Fracture of cementless femoral stems at the mid-stem junction in modular revision hip arthroplasty systems. J Bone Joint Surg Am 93(1):57–65

    Article  Google Scholar 

  65. Jacobs JJ, Urban RM, Gilbert JL, Skipor AK, Black J, Jasty M, Galante JO (1995) Local and distant products from modularity. Clin Orthop Relat Res (319):94–105

    Google Scholar 

  66. Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J Bone Joint Surg Am 76(9):1345–1359

    CAS  Google Scholar 

  67. Urban RM, Gilbert JL, Jacobs JJ (2005) Corrosion of modular titanium alloy stems in cementless hip replacement. J ASTM Int 2(10):215–224

    Article  Google Scholar 

  68. Cook SD, Barrack RL, Clemow AJ (1994) Corrosion and wear at the modular interface of uncemented femoral stems. J Bone Joint Surg Br 76(1):68–72

    CAS  Google Scholar 

  69. Jacobs JJ, Gilbert JL, Urban RM (1998) Current concepts review-corrosion of metal orthopaedic implants. J Bone Joint Surg 80(2):268

    CAS  Google Scholar 

  70. Gilbert J, Buckley C, Jacobs J, Bertin K, Zernich M (1994) Intergranular corrosion-fatigue failure of cobalt-alloy femoral stems. A failure analysis of two implants. J Bone Joint Surg 76(1):110

    CAS  Google Scholar 

  71. Brown SA, Flemming CAC, Kawalec JS, Placko HE, Vassaux C, Merritt K, Payer JH, Kraay MJ (1995) Fretting corrosion accelerates crevice corrosion of modular hip tapers. J Appl Biomater 6(1):19–26

    Article  CAS  Google Scholar 

  72. Lieberman JAYR, Rimnac CM, Garvin KL, Klein RW, Salvati EA (1994) An analysis of the head-neck taper interface in retrieved hip prostheses. Clin Orthop Relat Res (300):162

    Google Scholar 

  73. Collier JP, Surprenant VA, Jensen RE, Mayor MB, Surprenant HP (1992) Corrosion between the components of modular femoral hip prostheses. J Bone Joint Surg Br 74(4):511–517

    CAS  Google Scholar 

  74. Collier JP, Surprenant VA, Jensen RE, Mayor MB (1991) Corrosion at the interface of cobalt-alloy heads on titanium-alloy stems. Clin Orthop Relat Res (271):305–312

    Google Scholar 

  75. Collier JP, Mayor MB, Jensen RE, Surprenant VA, Surprenant HP, McNamar JL, Belec L (1992) Mechanisms of failure of modular prostheses. Clin Orthop Relat Res (285):129–139

    Google Scholar 

  76. Bertrand OF, Sipehia R, Mongrain R, Rodes J, Tardif J.C, Bilodeav L, Cote G, Bourassa MG (1998) Biocompatibility aspects of new stent technology. J Am Coll Cardiol 32(3):562–571

    Article  CAS  Google Scholar 

  77. Sivan S, Oeullette E, Gilbert JL (2010) Cathodic voltage preconditioning of Ti-6Al-4V in media affects MC3T3 preosteoblast cell viability. Transactions of the Society for Biomaterials, Seattle, WA

    Google Scholar 

Download references

Acknowledgements

JLG would like to acknowledge all of those colleagues and students who have worked with him over the 20 plus years of study of these issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy L. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gilbert, J.L., Mali, S.A. (2012). Medical Implant Corrosion: Electrochemistry at Metallic Biomaterial Surfaces. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_1

Download citation

Publish with us

Policies and ethics