Skip to main content

Abstract

Mixed acid–base disorders are common in hospitalized patients and particularly when severe can affect the clinical outcome. Diagnosis of these disturbances requires a systematic approach using information from a history and physical examination, knowledge of the secondary response to primary acid–base disorders, calculation of the serum anion gap and change in the anion gap from baseline, and in some cases urinary electrolytes. Treatment is based on the severity of the disturbances and can include with acidemia in addition to correction of the underlying cause administration of base. With alkalemia, in addition to administration of the underlying cause, dialysis with low bicarbonate dialysate might be required in severe cases in the presence of renal failure. The chapter reviews current information on diagnosis and recommendations for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson LE, Henrich WL. Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J. 1987;80:729–33.

    PubMed  CAS  Google Scholar 

  2. Narins RG, Emmett M. Simple and mixed acid-base disorders: a practical approach. Medicine. 1980;59:161–87.

    PubMed  CAS  Google Scholar 

  3. Adrogue HJ, Madias NE. Management of life-threatening acid-base disorders 1. N Engl J Med. 1998;338:107–10.

    PubMed  CAS  Google Scholar 

  4. Kraut JA, Madias NE. Approach to the diagnosis of acid-base disorders. Respir Care. 2001;46:392–403.

    PubMed  CAS  Google Scholar 

  5. Maccari C, Kamel KS, Davids MR, Halperin ML. The patient with a severe degree of metabolic acidosis: a deductive analysis. Q J Med. 2006;99:475–85.

    CAS  Google Scholar 

  6. Kurtz I. Acid-base Case Studies. Trafford publishing, Victoria, Canada. 2004;1–143.

    Google Scholar 

  7. Kamel KS, Halperin ML. An improved approach to the patient with metabolic acidosis: a need for four amendments. J Nephrol. 2006;S9:S76–85.

    Google Scholar 

  8. Treger R, Pirouz S, Kamangar N, Corry D. Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol. 2010;5:390–4.

    PubMed  CAS  Google Scholar 

  9. Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure—differences between arterial and central venous-blood. N Engl J Med. 1989;320:1312–6.

    PubMed  CAS  Google Scholar 

  10. Bloom SA, Canzanello VJ, Strom JA, Madias NE. Spurious assessment of acid-base status due to dilutional effect of heparin. Am J Med. 1985;79:528–30.

    PubMed  CAS  Google Scholar 

  11. Kassirer JP, Bleich HL. Rapid estimation of plasma carbon dioxide tension from pH and total carbon dioxide content. N Engl J Med. 1965;272:1067–8.

    PubMed  CAS  Google Scholar 

  12. Martinu T, Menzies D, Dial S. Re-evaluation of acid-base prediction rules in patients with chronic respiratory acidosis. Can Respir J. 2003;10:311–5.

    PubMed  Google Scholar 

  13. Gabow PA. Disorders associated with an altered anion gap. Kidney Int. 1985;27:472–83.

    PubMed  CAS  Google Scholar 

  14. Kraut JA, Madias NE. Serum anion gap: its uses and limitation in clinical medicine. Clin J Am Soc Nephrol. 2006;2:162–74.

    PubMed  Google Scholar 

  15. Adrogue HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med. 1981;71:456–67.

    PubMed  CAS  Google Scholar 

  16. Kamel KS, Quaggin S, Scheich A, Halperin ML. Disorders of potassium homeostasis—an approach based on pathophysiology. Am J Kidney Dis. 1994;24:597–613.

    PubMed  CAS  Google Scholar 

  17. Kim GH, Han JS, Kim YS, et al. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27:42–7.

    PubMed  CAS  Google Scholar 

  18. Battle D, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318:594–9.

    Google Scholar 

  19. Kamel KS, Ethier JH, Richardson RM, Bear RA, Halperin ML. Urine electrolytes and osmolality: when and how to use them. Am J Nephrol. 1990;10:89–102.

    PubMed  CAS  Google Scholar 

  20. Meregalli P, Luthy C, Oetliker OH, Bianchetti MG. Modified urine osmolal gap: an accurate method for estimating urinary ammonium concentration. Nephron. 1995;69:98–101.

    PubMed  CAS  Google Scholar 

  21. Carlisle EJF, Donnelly SM, Vasuvattakul S, Kamel KS, Tobe S, Halperin ML. Glue-sniffing and distal renal tubular-acidosis—sticking to the facts. J Am Soc Nephrol. 1991;1:1019–27.

    PubMed  CAS  Google Scholar 

  22. Halperin ML, Vasuvattakul S, Bayoumi A. A modified classification of metabolic acidosis. A pathophysiologic approach. Nephron. 1992;60:129–33.

    PubMed  CAS  Google Scholar 

  23. Oster JR, Preston RA, Materson BJ. Fluid and electrolyte disorders in congestive heart failure. Semin Nephrol. 1994;14:485–505.

    PubMed  CAS  Google Scholar 

  24. Galla JH. Metabolic alkalosis. J Am Soc Nephrol. 2000;11:369–75.

    PubMed  CAS  Google Scholar 

  25. Schwartz WB, Brackett NC, Cohen JJ. Defense of the hydrogen ion concentration during acute and chronic hypercapnia: the response to progressive elevation of carbon dioxide tension. Trans Assoc Am Physicians. 1964;77:182–7.

    PubMed  CAS  Google Scholar 

  26. Brackett NC, Cohen JJ, Schwartz WB. Carbon dioxide titration curve of normal man—effect of Iicreasing degrees of acute hypercapnia on acid-base equilibrium. N Engl J Med. 1965;272:6–12.

    PubMed  Google Scholar 

  27. Albert MS, Dell RB, Winters RW. Quantitative displacement of acid-base equlibrium in metabolic acidosis. Ann Intern Med. 1967;66:312–22.

    PubMed  CAS  Google Scholar 

  28. Wiederseiner JM, Muser J, Lutz T, Hulter HN, Krapf R. Acute metabolic acidosis: characterization and diagnosis of the disorder and the plasma potassium response. J Am Soc Nephrol. 2004;15:1589–96.

    PubMed  CAS  Google Scholar 

  29. Madias NE, Schwartz WB, Cohen JJ. The maladaptive renal response to secondary hypocapnia during chronic HCl acidosis in dog. J Clin Invest. 1977;60:1393–401.

    PubMed  CAS  Google Scholar 

  30. Madias NE, Adrogue HJ, Cohen JJ. Maladaptive renal response to secondary hypercapnia in chronic metabolic alkalosis. Am J Physiol. 1980;238:F283–7.

    PubMed  CAS  Google Scholar 

  31. Cohen JJ, Schwartz WB. Evaluation of acid-base equilibrium in pulmonary insufficiency. An approach to a diagnostic dilemma. Am J Med. 1966;41:163–7.

    PubMed  CAS  Google Scholar 

  32. Pierce NF, Fedson DS, Brigham KL, Mitra RC, Sack RB, Mondal A. The ventilatory response to acute base deficit in humans. Ann Intern Med. 1979;72:633–40.

    Google Scholar 

  33. Madias NE, Bossert WH, Adrogue HJ. Ventilatory response to chronic metabolic acidosis and alkalosis in the dog. J Appl Physiol. 1984;56:1640–6.

    PubMed  CAS  Google Scholar 

  34. Fulop M. A guide for predicting arterial CO2 tension in metabolic acidosis. Am J Nephrol. 1997;17:421–4.

    PubMed  CAS  Google Scholar 

  35. Winters RW, Lowder JA, Ordway NK. Observations on carbon dioxide tension during recovery from metabolic acidosis. J Clin Invest. 1958;37:640–5.

    PubMed  CAS  Google Scholar 

  36. Asch MJ, Dell RB, Williams GS, Cohen M, Winters RW. Time course for development of respiratory compensation in metabolic acidosis. J Lab Clin Med. 1969;73:610–5.

    PubMed  CAS  Google Scholar 

  37. Bushinsky DA, Coe FL, Katzenberg C, Szidon JP, Parks JH. Arterial PCO2 in chronic metabolic acidosis. Kidney Int. 1982;22:311–4.

    PubMed  CAS  Google Scholar 

  38. Adrogue HJ, Madias NE. PCO2 (and [K+])(p) in metabolic acidosis: certainty for the first and uncertainty for the other. J Am Soc Nephrol. 2004;15:1667–8.

    PubMed  Google Scholar 

  39. Javaheri S, Shore NS, Rose B, Kazemi H. Compensatory hypoventilation in metabolic alkalosis. Chest. 1982;81:296–301.

    PubMed  CAS  Google Scholar 

  40. Javaheri S, Kazemi H. Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis. 1987;136:1011–6.

    PubMed  CAS  Google Scholar 

  41. Roberts KE, Poppell JW, Vanamee P, Beals R, Randall HT. Evaluation of respiratory compensation in metabolic alkalosis. J Clin Invest. 1956;35:261–6.

    PubMed  CAS  Google Scholar 

  42. de Strihou Y. Frans A: the respiratory response to chronic metabolic alkalosis and acidosis in disease. Clin Sci Mol Med. 1973;45:439–48.

    Google Scholar 

  43. Kraut JA, Adrogue HJ, Madias NE. Respiratory and mixed acid-base disorders. In: Brady H, Wilcox C, editors. Therapy in nephrology and hypertension: companion to the kidney. Saunders Philadelphia Pennsylvania 1st ed. 1999;292–302.

    Google Scholar 

  44. Ackerman GL, Arruda JAL. Acid-base and electrolyte imbalance in respiratory failure. Med Clin North Am. 1983;67:645–56.

    PubMed  CAS  Google Scholar 

  45. Schwartz WB, Brackett NCJ, Cohen JJ. Response of extracellular hydrogen ion concentration to graded degrees of chronic hypercapnia:physiologic limits of defense of pH. J Clin Invest. 1965;44:291–301.

    PubMed  CAS  Google Scholar 

  46. Arbus GS, Hebert LA, Levesque PR, Etsten BE, Schwartz WB. Characterization and clinical application of significance band for acute respiratory alkalosis. N Eng J Med. 1969;280:117–23.

    CAS  Google Scholar 

  47. Brackett NCJ, Wingo CF, Muren O, Solano JT. Acid-base response to chronic hypercapnia in man. N Engl J Med. 1969;280:124–30.

    PubMed  Google Scholar 

  48. Adrogue HJ, Madias NE. Influence of chronic respiratory acid-base disorders on acute CO2 titration curve. J Appl Physiol. 1985;58:1231–8.

    PubMed  CAS  Google Scholar 

  49. Robin EG. Abnormalities of acid-base regulation in chronic pulmonary disease with special reference to hypercapnia and extracellular alkalosis. N Engl J Med. 2006;268:917–22.

    Google Scholar 

  50. Gennari FJ, Goldstein MB, Schwartz WB. The nature of the renal adaptation to chronic hypocapnia. J Clin Invest. 1972;51:1722–30.

    PubMed  CAS  Google Scholar 

  51. Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis—the effect of sustained hyperventilation on renal regulation of acid-base-equilibrium. N Engl J Med. 1991;324:1394–401.

    PubMed  CAS  Google Scholar 

  52. Aberman A, Fulop M. The metabolic and respiratory acidosis of acute pulmonary edema. Ann Intern Med. 1972;76:173.

    PubMed  CAS  Google Scholar 

  53. Palange P, Carlone S, Galassetti P, Felli A, Serra P. Incidence of acid-base and electrolyte disturbances in a general hospital: a study of 110 consecutive admissions. Recenti Prog Med. 1990;81:788–91.

    PubMed  CAS  Google Scholar 

  54. Weil MH, Rackow EC, Trevino R, et al. Difference in acid-base state between venous and arterial blood during cardiopulmonary resusitation195. N Engl J Med. 1986;315:153–6.

    PubMed  CAS  Google Scholar 

  55. Elisaf M, Theodrou J, Pappas H, Siamopoulos KC. Acid-base and electrolyte abnormalities in febrile patients with bacteremia. Eur J Med. 1993;2:404–7.

    PubMed  CAS  Google Scholar 

  56. Gabow PA, Anderson RJ, Potts DE, Schrier RW. Acid-base disturbances in the salicylate intoxicated adult. Arch Intern Med. 1978;138:1481–4.

    PubMed  CAS  Google Scholar 

  57. Oster JR, Perez GO. Acid-base disturbances in liver disease. J Hepatol. 1986;2:299–306.

    PubMed  CAS  Google Scholar 

  58. Paulson WD. Effect of acute pH change on the serum anion gap. J Am Soc Nephrol. 1996;7:357–64.

    PubMed  CAS  Google Scholar 

  59. Brimioulle S, Berre J, Dufaye P, Vincent JLDJP, Kahn RJ. Hydrochloric acid infusion for the treatment of metabolic alkalosis with respiratory acidosis. Crit Care Med. 1989;17:232–6.

    PubMed  CAS  Google Scholar 

  60. Bear R, Goldstein M, Phillipson E, Ho M, Hammeke M, Feldman R, Handelsman S, Halperin M. Effect of metabolic alkalosis on respiratory function in patients with chronic obstructive lung disease. Can Med Assoc J. 1977;117:900–3.

    PubMed  CAS  Google Scholar 

  61. Hodgkin JE, Soeprono FF, Chan DM. Incidence ofmetabolic alkalemia in hospitalized patients. Crit Care Med. 1980;8:725–8.

    PubMed  CAS  Google Scholar 

  62. Cham GWM, Tan WP, Earnest A, Soh CH. Clinical predictors of acute respiratory acidosis during exacerbation of asthma and chronic obstructive pulmonary disease. Eur J Emerg Med. 2002;9:225–32.

    PubMed  CAS  Google Scholar 

  63. Emmett M, Narins RG. Clinical use of the anion gap. Medicine. 1977;56:38–54.

    PubMed  CAS  Google Scholar 

  64. Frohlich J, Adam W, Golbey MJ, Bernstein M. Decreased anion gap associated with monoclonal and pseudomonoclonal gammopathy. Can Med Assoc J. 1976;114:231–2.

    PubMed  CAS  Google Scholar 

  65. Winter SD, Pearson R, Gabow PA, et al. The fall of the serum anion gap. Arch Intern Med. 1990;150:311–6.

    PubMed  CAS  Google Scholar 

  66. Feldman M, Soni N, Dickson B. Influence of hypoalbuminemia or hyperalbuminemia on the serum anion gap. J Lab Clin Med. 2005;146:317–20.

    PubMed  CAS  Google Scholar 

  67. Kirschbaum B. The acidosis of exogenous phosphate intoxication. Arch Intern Med. 1998;158:405–8.

    PubMed  CAS  Google Scholar 

  68. Wang F, Butler T, Rabbani GH, Jones PK. The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med. 1986;315:1591–5.

    PubMed  CAS  Google Scholar 

  69. Oster JR, Singer I, Contreras GN, Ahmad HI, Vieira CF. Metabolic acidosis with extreme elevation of anion gap: case report and literature review. Am J Med Sci. 1999;317:38–49.

    PubMed  CAS  Google Scholar 

  70. Adrogue HJ, Brensilver J, Madias NE. Changes in plasma anion gap during chronic metabolic acid-base disturbances. Am J Physiol. 1978;235: F291–7.

    PubMed  CAS  Google Scholar 

  71. Goodkin DA, Krishna GG, Narins RG. The role of the anion gap in detecting and managing mixed ­metabolic acid-base disorders. Clin Endocrinol Metab. 1984;13:333–49.

    PubMed  CAS  Google Scholar 

  72. Emmett M. Anion gap interpretation: the old and the new. Nat Clin Pract Nephrol. 2006;2:4–6.

    PubMed  Google Scholar 

  73. Madias NE, Homer SM, Johns CA, Cohen JJ. Hypochloremia as a consequence of anion gap metabolic acidosis. J Lab Clin Med. 1984;104:15–23.

    PubMed  CAS  Google Scholar 

  74. Kim HY, Han JS, Jeon US, Joo KW, Earm JH, Ahn C, Kim S, Lee JS, Kim GH. Clinical signficiance of the fractional excretion of anions in metabolic acidosis. Clin Nephrol. 2001;55:448–52.

    PubMed  CAS  Google Scholar 

  75. Oh MS, Carroll HJ, Uribarri J. Mechanism of normochloremic and hyperchloremic acidosis in diabetic ketoacidosis. Nephron. 1990;54:1–6.

    PubMed  CAS  Google Scholar 

  76. Adrogue HJ, Ecknoyan G, Suki WN. Diabetic ketoacidosis role of the kidney in acid-base homeostasis reevaluated. Kidney Int. 1984;25:591–9.

    PubMed  CAS  Google Scholar 

  77. Adrogue HJ, Wilson H, Boyd AE, Suki WN, Eknoyan G. Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med. 1982;307:1603–10.

    PubMed  CAS  Google Scholar 

  78. Uribarri J, Oh MS, Carroll HJ. D-Lactic acidosis—a review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine. 1998;77:73–82.

    PubMed  CAS  Google Scholar 

  79. Madias NE, Ayus JC, Adrogue HJ. Increased anion gap in metabolic alkalosis: the role of plasma protein equivalency. N Engl J Med. 1979;300:1421–3.

    PubMed  CAS  Google Scholar 

  80. Greenberg A. Diuretic complications. Am J Med Sci. 2000;319:10–24.

    PubMed  CAS  Google Scholar 

  81. Wu DM, Bassuk J, Arias J, Doods H, Adams JA. Cardiovascular effects of Na+/H+ exchanger inhibition with BIIB513 following hypovolemic circulatory shock. Shock. 2005;23:269–74.

    PubMed  CAS  Google Scholar 

  82. Kraut JA, Kurtz I. Use of base in the treatment of severe acidemic states. Am J Kidney Dis. 2001;38:703–27.

    PubMed  CAS  Google Scholar 

  83. Steenbergen C, Deleeuw G, Terrell R, Williamson JR. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res. 1977;41:849–58.

    PubMed  CAS  Google Scholar 

  84. Daniel SR, Morita SY, Yu MH, Dzierba A. Uncompensated metabolic acidosis: an underrecognized risk factor for subsequent intubation requirement. J Trauma. 2004;57:993–7.

    PubMed  Google Scholar 

  85. Davies AO. Rapid desensitization and uncoupling of human b-adrenergic receptors in an in vitro model of lactic acidosis. J Clin Endocrinol Metab. 1984;59:398–404.

    PubMed  CAS  Google Scholar 

  86. Halperin FA, Cheema-Dhadli S, Chen CB, Halperin MI. Alkali therapy extends the period of survival during hypoxia: studies in rats. Am J Physiol. 1996;271:R381–7.

    PubMed  CAS  Google Scholar 

  87. Halperin ML, Cheema-Dhadli S, Halperin FA, Kamel KS. Rationale for the use of sodium bicarbonate in a patient with lactic acidosis due to a poor cardiac output. Nephron. 1994;66:258–61.

    PubMed  CAS  Google Scholar 

  88. Narins RG, Cohen JJ. Bicarbonate therapy for organic acidosis: the case for its continued use. Ann Intern Med. 1987;106:615–8.

    PubMed  CAS  Google Scholar 

  89. Forsythe S, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117:260–7.

    PubMed  CAS  Google Scholar 

  90. Sabatini S, Kurtzman NA. Bicarbonate therapy in severe metabolic acidosis. J Am Soc Nephrol. 2009;20:692–5.

    PubMed  CAS  Google Scholar 

  91. Kraut JA, Madias N. Metabolic acidosis pathophysiology, diagnosis and management. Nat Rev Nephrol. 2010;6:274–85.

    PubMed  CAS  Google Scholar 

  92. Widenthal K, Mierzwiak DS, Myers RW, Mitchell JH. Effects of acute lactic acidosis on left ventricular performance. Am J Physiol. 1968;214:1352–9.

    Google Scholar 

  93. Cooper DJ, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. Ann Intern Med. 1990;112:492–8.

    PubMed  CAS  Google Scholar 

  94. Stacpoole PW. Lactic acidosis: the case against bicarbonate therapy. Ann Intern Med. 1986;105:276–9.

    PubMed  CAS  Google Scholar 

  95. Levraut J, Labib Y, Chave S, et al. Effect of sodium bicarbonate on intracellular pH under different buffering conditions. Kidney Int. 1996;49:1262–7.

    PubMed  CAS  Google Scholar 

  96. Nahas GG, Sutin KM, Fermon C. Guidelines for the treatment of acidaemia with THAM. Drugs. 1998;55:191–224.

    PubMed  CAS  Google Scholar 

  97. Bjerneroth G. Tribonat (R)—a comprehensive summary of its properties. Crit Care Med. 1999;27:1009–13.

    PubMed  CAS  Google Scholar 

  98. Leung JM, Landow L, Franks M, Soja-Strzepa D, Heard SO, Arieff AI, Mangano DT. Safety and efficacy of intravenous carbicarb in patients undergoing surgery: comparison with sodium bicarbonate in the treatment of metabolic acidosis. Crit Care Med. 1994;22:1540–9.

    PubMed  CAS  Google Scholar 

  99. Mazer CD, Naser B, Kamel KS. Effect of alkali therapy with NaHCO3 or THAM on cardiac contractility. Am J Physiol. 1996;270:955–62.

    Google Scholar 

  100. Hoste EA, Colpaert K, Vanholder RC, Lameire NH, De Waele JJ, Blot SI, Colardyn FA. Sodium bicarbonate versus THAM in ICU patients with mild metabolic acidosis. J Nephrol. 2005;18:303–7.

    PubMed  CAS  Google Scholar 

  101. Weber T, Tschernich H, Sitzwohl C, Ullrich RGP, Zimpfer M, Sladen RN, Huemer G. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patient with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162:1361–5.

    PubMed  CAS  Google Scholar 

  102. Sun JH, Filley GF, Hord K, Kindig NB, Bartle EJ. Carbicarb: an effective substitute for NaHCO3. Surgery. 1987;102:835–9.

    PubMed  CAS  Google Scholar 

  103. Bersin RM, Arieff AI. Improved hemodynamic function during hypoxia with carbicarb, a new agent for the management of acidosis. Circulation. 1988;77:227–33.

    PubMed  CAS  Google Scholar 

  104. Lalau JD, Westeel PF, Debussche X, Dkissi H, Tolani M, Coevoet B, Temperville B, Fournier A, Ouichaud J. Bicarbonate haemodialysis: an adequate treatment for lactic acidosis in diabetics treated by metformin. Intensive Care Med. 1987;13:383–7.

    PubMed  CAS  Google Scholar 

  105. Hilton PJ, Taylor LG, Forni LG, Treacher DF. Bicarbonate-based haemofiltration in the management of acute renal failure with lactic acidosis. Q J Med. 1998;91:279–83.

    CAS  Google Scholar 

  106. Kallet RH, Liu K, Tang J. Management of acidosis during lung protective ventilation in acute respiratory distress. Respir Care Clin N Am. 2003;9:437–56.

    PubMed  Google Scholar 

  107. Hsu SC, Wang MC, Liu HL, Tsai MC, Huang JJ. Extreme metabolic alkalosis treated with normal bicarbonate hemodialysis. Am J Kidney Dis. 2001;37:e31.

    PubMed  CAS  Google Scholar 

  108. Webster NR, Kulkarni V. Metabolic alkalosis in the critically ill. Crit Rev Clin Lab Sci. 1999;36:497–510.

    PubMed  CAS  Google Scholar 

  109. Gerhardt RE, Koethe JD, Glickman JD, Ntoso KA, Hugo JP, Wolf CJ. Acid dialysate correction of metabolic alkalosis in renal-failure. Am J Kidney Dis. 1995;25:343–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Kraut M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kraut, J.A., Kurtz, I. (2013). Mixed Acid–Base Disorders. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics