Skip to main content

Human Brain Imaging of Tinnitus

  • Chapter
  • First Online:
Tinnitus

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 44))

Abstract

This chapter describes the study of tinnitus in humans by means of neuroimaging to measure brain function and structure. Here, “neuroimaging” is defined to mean any of a variety of noninvasive techniques, from scalp recordings of electrical activity, to images permitting quantification of the gray and white matter of the cerebral cortex, to neurally coupled changes in blood flow. This chapter focuses specifically on the use of neuroimaging to understand chronic, subjective tinnitus, that is, tinnitus that is lasting and cannot be explained by either an external sound source, or a source within the body (Eggermont and Zeng, Chapter 1). Although defined as the perception of sound lacking a physical sound source, the clinical condition of tinnitus is more than the percept. The tinnitus patient often presents with depression, anxiety, difficulties concentrating, and/or difficulties sleeping. These nonperceptual aspects of the condition are what make tinnitus a clinical problem for approximately 5–10% of the population (Coles, 1984; Shargorodsky et al., 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson, G., & McKenna, L. (2006). The role of cognition in tinnitus. Acta Oto-Laryngologica (Supplementum 126), 39–43.

    Google Scholar 

  • Arnold, W., Bartenstein, P., Oestreicher, E., Römer, W., & Schwaiger, M. (1996). Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: A PET study with [18  F]deoxyglucose. ORL, 58(4), 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6 Pt. 1), 805–821.

    Google Scholar 

  • Baguley, D. M. (2003). Hyperacusis. Journal of the Royal Society of Medicine, 96, 582–585.

    Article  PubMed  Google Scholar 

  • Bandettini, P. A. (2009). What’s new in neuroimaging methods? Annals of the New York Academy of Science, 1156, 260–293.

    Article  Google Scholar 

  • Barrick, T. R., Charlton, R. A., Clark, C. A., & Markus, H. S. (2010). White matter structural decline in normal ageing: A prospective longitudinal study using tract-based spatial statistics. NeuroImage, 51(2), 565–577.

    Article  PubMed  Google Scholar 

  • Brozoski, T. J., Bauer, C. A., & Caspary, D. M. (2002). Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. Journal of Neuroscience, 22(6), 2383–2390.

    PubMed  CAS  Google Scholar 

  • Cacace, A. T., & Silver, S. M. (2007). Applications of magnetic resonance spectroscopy to tinnitus research: Initial data, current issues, and future perspectives. Progress in Brain Research, 166, 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Cacace, A. T., Hu, J., Romero, S., & Xuan, Y. (2011). Neurobiochemical and psychometric correlates f noise-induced tinnitus following low frequency rTMS over the left temporal lobe of humans. Buffalo, NY: Abstracts of 5th International Tinnitus Research Initiative Conference, Buffalo, NY, August 19–21, 2011 (p. 13).

    Google Scholar 

  • Clarke, S., & Morosan, P. (2012). Architecture, connectivity and transmitter receptors of human auditory cortex. In D. Poeppel, T. Overath, A. N. Popper, & R. R. Fay (Eds.), Human auditory cortex. New York: Springer.

    Google Scholar 

  • Coad, M. L., Lockwood, A., Salvi, R., & Burkard, R. (2001). Characteristics of patients with gaze-evoked tinnitus. Otology & Neurotology, 22(5), 650–654.

    Article  CAS  Google Scholar 

  • Cohen, D., & Cuffin, B. N. (1987). A method for combining MEG and EEG to determine the sources. Physics in Medicine & Biology, 32(1), 85–89.

    Article  CAS  Google Scholar 

  • Colding-Jørgensen, E., Lauritzen, M., Johnsen, N. J., Mikkelsen, K. B., & Særmark, K. (1992). On the evidence of auditory evoked magnetic fields as an objective measure of tinnitus. Electroencephalography Clinical Neurophysiology, 83(5), 322–327.

    Article  Google Scholar 

  • Coles, R. A. (1984). Epidemiology of tinnitus: (1) Prevalence. Journal of Laryngology & Otology, Supplement, 9, 7–15.

    Article  CAS  Google Scholar 

  • Crippa, A., Lanting, C. P., van Dijk, P., & Roerdink, J. B. (2010). A diffusion tensor imaging study on the auditory system and tinnitus. The Open Neuroimaging Journal, 4, 16–25.

    Article  PubMed  Google Scholar 

  • Daftary, A., Shulman, A., Strashun, A. M., Gottschalk, C., Zoghbi, S. S., & Seibyl, J. P. (2004). Benzodiazepine receptor distribution in severe intractable tinnitus. International Tinnitus Journal, 10(1), 17–23.

    PubMed  CAS  Google Scholar 

  • Degerman, A., Rinne, T., Salmi, J., Salonen, O., & Alho, K. (2006). Selective attention to sound location or pitch studied with fMRI. Brain Research, 1077(1), 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  PubMed  Google Scholar 

  • Diesch, E., Struve, M., Rupp, A., Ritter, S., Hülse, M., & Flor, H. (2004). Enhancement of steady-state auditory evoked magnetic fields in tinnitus. European Journal of Neuroscience, 19(4), 1093–1104.

    Article  PubMed  Google Scholar 

  • Diesch, E., Andermann, M., Flor, H., & Rupp, A. (2010a). Interaction among the components of multiple auditory steady-state responses: Enhancement in tinnitus patients, inhibition in controls. Neuroscience, 167(2), 540–553.

    Article  PubMed  CAS  Google Scholar 

  • Diesch, E., Andermann, M., Flor, H., & Rupp, A. (2010b). Functional and structural aspects of tinnitus-related enhancement and suppression of auditory cortex activity. NeuroImage, 50(4), 1545–1559.

    Article  PubMed  Google Scholar 

  • Edmister, W. B., Talavage, T. M., Ledden, P. J., & Weisskoff, R. M. (1999). Improved auditory cortex imaging using clustered volume acquisitions. Human Brain Mapping, 7(2), 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. J., & Roberts, L. E. (2004). The neuroscience of tinnitus. Trends in Neuroscience, 27(11), 676–682.

    Article  CAS  Google Scholar 

  • Feldmann, H. (1984). Masking-mechanisms (IPSI, contralateral masking). Journal of Laryngology & Otology, 98(Supplement 9), 54–58.

    Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance image. Proceedings of the National Academy of Sciences of the USA, 97(20), 11050–11055.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain, Neuron, 33(3), 341–355.

    Article  PubMed  CAS  Google Scholar 

  • Giraud, A. L., Chéry-Croze, S., Fischer, G., Fischer, C., Vighetto, A., Grégoire, C., et al. (1999). A selective imaging of tinnitus. NeuroReport, 10(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt. 1), 21–36.

    Google Scholar 

  • Gu, J. W., Halpin, C. F., Nam, E.-C., Levine, R. A., & Melcher, J. R. (2010). Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity, Journal of Neurophysiology, 104(6), 3361–3370.

    Article  PubMed  Google Scholar 

  • Gutschalk, A., Mase, R., Roth, R., Ille, N., Rupp, A., Hähnel, S., et al.(1999). Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clinical Neurophysiology, 110(5), 856–868.

    Article  PubMed  CAS  Google Scholar 

  • Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott, M. R., et al. (1999). “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping, 7(3), 231–223.

    Article  Google Scholar 

  • Hari, R. (1990). The neuromagnetic method in the study of the human auditory cortex. In P. Grandori, M. Hoke, & G. L. Romani (Eds.), Auditory evoked magnetic fields and electric ootentials (pp. 222–282). Basel: Karger.

    Google Scholar 

  • Hébert, S., Fullum, S., & Carrier, J. (2011). Polysomnographic and quantitative electroencephalographic correlates of subjective sleep complaints in chronic tinnitus. Journal of Sleep Research, 20(1 Pt. 1), 38–44.

    Google Scholar 

  • Hillyard, S. A. (1993). Electrical and magnetic brain recordings: Contributions to cognitive neuroscience. Current Opinion in Neurobiology, 3(2), 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Hoke, M., Feldmann, H., Pantev, C., Lütkenhöner, B., & Lehnertz, K. (1989). Objective evidence of tinnitus in auditory evoked magnetic fields. Hearing Research, 37(3), 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging, Sunderland, MA: Sinauer.

    Google Scholar 

  • Husain, F. T., Medina, R. E., Davis, C. W., Szymko-Bennett, Y., Simonyan, K., Pajor, N., & Horwitz, B. (2011). Neuroanatomical changes due to hearing loss and chronic tinnitus: A combined VBM and DTI study. Brain Research, 1369, 74–88.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, G. P., & McCaslin, D. L. (2003). A reexamination of the long latency N1 response in patients with tinnitus. Journal of the American Academy of Audiology, 14(7), 393–400.

    PubMed  Google Scholar 

  • Johnsrude, I. S., Giraud, A. L., & Frackowiak, R. S. (2002). Functional imaging of the auditory system: The use of positron emission tomography. Audiology and Neuro-otology, 7(5), 251–276.

    Article  PubMed  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach, J. A., Zacharek, M. A., Zhang, J. S., & Frederick, S. (2004). Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neuroscience Letters, 355(1–2), 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077–14085.

    Article  PubMed  CAS  Google Scholar 

  • Landgrebe, M., Langguth, B., Rosengarth, K., Braun, S., Koch, A., Kleinjung, T., et al. (2009). Structural brain changes in tinnitus: Grey matter decrease in auditory and non-auditory brain areas. NeuroImage, 46(1), 213–218.

    Article  PubMed  Google Scholar 

  • Langguth, B., Eichhammer, P., Kreutzer, A., Maenner, P., Marienhagen, J., Kleinjng, T., et al. (2006). The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus—first results from a PET study. Acta Oto-Laryngologica Supplementum, 556, 84–88.

    Article  PubMed  Google Scholar 

  • Lanting, C. P., de Kleine, E., Bartels, H., & van Dijk, P. (2008). Functional imaging of unilateral tinnitus using fMRI. Acta Oto-Laryngologica, 128(4), 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Lanting, C. P., de Kleine, E., Eppinga, R. N., & van Dijk, P. (2010). Neural correlates of human somatosensory integration in tinnitus. Hearing Research, 267(1–2), 78–88.

    Article  PubMed  CAS  Google Scholar 

  • Leaver, A. M., Renier, L., Chevillet, M. A., Morgan, S., Kim, H. J., & Rauschecker, J. P. (2011). Dysregulation of limbic and auditory networks in tinnitus. Neuron, 69(1), 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Bae, S. J., Lee, S. H., Lee, K. Y., Kim, M. N., Kim, Y. S., et al.(2007). Evaluation of white matter structures in patients with tinnitus using diffusion tensor imaging. Journal of Clinical Neuroscience, 14(6), 515–519.

    Article  PubMed  Google Scholar 

  • Levine, R. A. (2004). Somatic tinnitus. In J. B. Snow (Ed.), Tinnitus: Theory and management (pp. 108–124). London: B. C. Decker.

    Google Scholar 

  • Lockwood, A. H., Salvi, R. J., Coad, M. L., Towsley, M. L., Wack, D. S., & Murphy, B. W. (1998). The functional neuroanatomy of tinnitus: Evidence for limbic system links and neural plasticity. Neurology, 50(1), 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Lockwood, A. H., Wack, D. S., Burkard, R. F., Coad, M. L., Reyes, S. A., Arnold, S. A., & Salvi, R. J. (2001). The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology, 56(4), 472–480.

    Article  PubMed  CAS  Google Scholar 

  • Lütkenhöner, B., & Steinsträter, O. (1998). High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiology & Neurotology, 3(2–3), 191–213.

    Google Scholar 

  • Melcher, J. R. (2009). Auditory evoked potentials. In L. R. Squire (Ed.), Encyclopedia of neuroscience, Vol. 1 (pp. 715–719). Oxford: Academic Press.

    Google Scholar 

  • Melcher, J. R., Sigalovsky, I. S., Guinan, J. J. Jr., & Levine, R. A. (2000). Lateralized tinnitus studied with functional magnetic resonance imaging: Abnormal inferior colliculus activation. Journal of Neurophysiology, 83(2), 1058–1072.

    PubMed  CAS  Google Scholar 

  • Melcher, J. R., Levine, R. A., Bergevin, C., & Norris, B. (2009). The auditory midbrain of people with tinnitus: Abnormal sound-evoked activity revisited. Hearing Research, 257(1–2), 63–74.

    Article  PubMed  Google Scholar 

  • Melding, P. S., Goodey, R. J., & Thorne, P. R. (1978). The use of intravenous lignocaine in the diagnosis and treatment of tinnitus. Journal of Laryngology & Otology, 92(2), 115–121.

    Article  CAS  Google Scholar 

  • Mirz, F., Pedersen, C. B., Ishizu, K., Johannsen, P., Ovesen, T., Stødkilde-Jørgensen, H., & Gjedde, A. (1999). Positron emission tomography of cortical centers of tinnitus. Hearing Research, 134(1–2), 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Moazami-Goudarzi, M., Michels, L., Weisz, N., & Jeanmonod, D. (2010). Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neuroscience, 11, 40.

    Google Scholar 

  • Mühlau, M., Rauschecker, J. P., Oestreicher, E., Gaser, C., Röttinger, M., Wohlschläger, A. M., et al. (2006). Structural brain changes in tinnitus. Cerebral Cortex, 16(9), 1283–1288.

    Article  PubMed  Google Scholar 

  • Mühlnickel, W., Elbert, T., Taub, E., & Flor, H. (1998). Reorganization of auditory cortex in tinnitus. Proceedings of the National Academy of Sciences of the USA, 95(17), 10340–10343.

    Article  PubMed  Google Scholar 

  • Nagarajan, S., Gabriel, R. A., & Herman, A. (2012). Magnetoencephalography. In Poeppel, D., Overath, T., Popper, A. N., & Fay, R. R. (Eds.), Human auditory cortex. New York: Springer.

    Google Scholar 

  • Nuttall, A. L., Meikle, M. B., & Trune, D. R. (2004). Peripheral processes involved in tinnitus. In J. B. Snow (Ed.), Tinnitus: Theory and management (pp. 52–68). London: B. C. Decker.

    Google Scholar 

  • Okamoto, H., Stracke H., Stoll, W., & Pantev C. (2010). Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proceedings of the National Academy of Sciences of the USA, 107(3), 1207–1210.

    Article  PubMed  CAS  Google Scholar 

  • Paltoglou, A. E., Sumner, C. J., & Hall D. A. (2009). Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention. Hearing Research, 257(1–2), 106–118.

    Article  PubMed  Google Scholar 

  • Pantev, C., Hoke, M., Lütkenhöner, B., Lehnertz, K., & Kumpf, W. (1989). Tinnitus remission objectified by neuromagnetic measurements. Hearing Research, 40(3), 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Rademacher, J., Morosan, P., Schormann, T., Schleicher, A., Werner, C., Freund, H. J., & Zilles, K. (2001). Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage, 13(4), 669–683.

    Article  PubMed  CAS  Google Scholar 

  • Ravicz, M. E., Melcher, J. R., & Kiang, N. Y. S. (2000). Acoustic noise during functional magnetic resonance imaging. Journal of the Acoustical Society of America, 108(4), 1683–1696.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, S. A., Salvi, R. J., Burkard, R. F., Coad, M. L., Wack, D. S., Galantowicz, P. J., & Lockwood, A. H. (2002). Brain imaging of the effects of lidocaine on tinnitus. Hearing Research, 171(1–2), 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, L. E., Moffat, G., Baumann, M., Ward, L. M., & Bosnyak, D. J. (2008). Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. Journal of the Association for Research in Otolaryngology, 9(4), 417–435.

    Article  PubMed  Google Scholar 

  • Ross, B., & Tremblay, K. (2009). Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hearing Research, 248(1–2), 48–59.

    Article  PubMed  Google Scholar 

  • Ross, B., Picton, T. W., & Pantev, C. (2002). Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hearing Research, 165(1–2), 68–84.

    Article  PubMed  Google Scholar 

  • Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–694.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, P., Andermann, M., Wengenroth, M., Goebel, R., Flor, H., Rupp, A., & Diesch, E. (2009). Reduced volume of Heschl’s gyrus in tinnitus. NeuroImage, 45(3), 927–939.

    Article  PubMed  Google Scholar 

  • Shargorodsky, J., Curhan, G. C., & Farwell, W. R. (2010). Prevalence and characteristics of tinnitus among US adults. The American Journal of Medicine, 123(8), 711–718.

    Article  PubMed  Google Scholar 

  • Sheline, Y. I., Barach, D. M., Price, J. L., Rundie, M. M., Vaishnavi, S. N., Snyder, A. Z., et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the USA, 106(6), 1942–1947.

    Article  PubMed  CAS  Google Scholar 

  • Shore, S., Zhou, J., & Koehler, S. (2007). Neural mechanisms underlying somatic tinnitus. Progress in Brain Research, 166, 107–123.

    Article  PubMed  Google Scholar 

  • Shore, S. E., Koehler, S., Oldakowski, M., Hughes, L. F., & Syed, S. (2008). Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. European Journal of Neuroscience, 27(1), 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Sigalovsky, I. S., & Melcher, J. R. (2006). Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hearing Research, 215(1–2), 67–76.

    Article  PubMed  Google Scholar 

  • Smits, M., Kovacs, S., de Ridder, D., Peeters, R. R., van Hecke, P., & Sunaert, S. (2007). Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology, 49(8), 669–679.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., et al. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17(7), 1550–1560.

    Article  PubMed  Google Scholar 

  • Stevens, C., Walker, G., Boyer, M., & Gallagher, M. (2007). Severe tinnitus and its effect on selective and divided attention. International Journal of Audiology, 46(5), 208–216.

    Article  PubMed  Google Scholar 

  • Stouffer, J. L., & Tyler, R. S. (1990). Characterization of tinnitus by tinnitus patients. Journal of Speech and Hearing Disorders, 55(3), 439–453.

    PubMed  CAS  Google Scholar 

  • Strauss, D. J., Delb, W., D’Amelio, R., Low, Y. F., & Falkai, P. (2008). Objective quantification of the tinnitus decompensation by synchronization measures of auditory evoked single sweeps. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(1), 74–81.

    Article  PubMed  Google Scholar 

  • Talavage, T. M., Johnsrude, I. S., & Gonzalez Castillo, J. (2012). Hemodynamic imaging: fMRI. In D. Poeppel, T. Overath, A. N. Popper, & R. R. Fay (Eds.), Human auditory cortex. New York: Springer.

    Google Scholar 

  • Turner, J. (2007). Behavioral measures of tinnitus in laboratory animals. Progress in Brain Research, 166, 147–156.

    Article  PubMed  Google Scholar 

  • van der Loo, E., Gais, S., Congedo, M., Vanneste, S., Plazier, M., Menovsky, T., et al. (2009). Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS ONE, 4(10), e7396.

    Article  PubMed  Google Scholar 

  • Vanneste, S., Plazier, M., van der Loo, E., Van de Heyning, P., & De Ridder, D. (2010). The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS ONE. 5(10), e13618.

    Article  PubMed  Google Scholar 

  • Wang, H., Tian, J., Yin, D., Jiang, S., Yang, W., Han, D., et al. (2001). Regional glucose metabolic increases in left auditory cortex in tinnitus patients: a preliminary study with positron emission tomography. Chinese Medical Journal, 114(8), 848–851.

    PubMed  CAS  Google Scholar 

  • Weisz, N., Moratti, S., Meinzer, M., Dohrmann, K., & Elbert, T. (2005). Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Medicine, 2(6), e153.

    Article  PubMed  Google Scholar 

  • Weisz, N., Müller, S., Schlee, W., Dohrmann, K., Hartmann, T., & Elbert, T. (2007). The neural code of auditory phantom perception. Journal of Neuroscience, 27(6), 1479–1484.

    Article  PubMed  CAS  Google Scholar 

  • Wienbruch, C., Paul, I., Weisz, N., Elbert, T., & Roberts, L. E. (2006). Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. NeuroImage, 33(1), 180–194.

    Article  PubMed  Google Scholar 

  • Zheng, Y., Hamilton, E., Stiles, L., McNamara, E., de Waele, C., Smith, P. F., & Darlington, C. L. (2011a). Acoustic trauma that can cause tinnitus impairs impulsive control but not performance accuracy in the 5-choice serial reaction time task in rats. Neuroscience, 180, 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Hamilton, E., McNamara, E., Smith, P. F., & Darlington, C. L. (2011b). The effects of chronic tinnitus caused by acoustic trauma on social behavior and anxiety in rats. Neuroscience, 193, 143–153.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Barbara Norris for her assistance with figures and referencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Melcher .

Editor information

Editors and Affiliations

Abbreviations

ASSR

auditory steady-state response

BOLD

blood oxygenation level–dependent

CVA

clustered volume acquisition

DTI

diffusion tensor imaging

EEG

electroencephalogram

ERP

event-related potential

IC

inferior colliculi

MEG

agnetoencephalogram

MRI

magnetic resonance imaging

OFM

oral–facial maneuvers

PAC

primary auditory cortex

PET

positron emission tomography

SPECT

single-photon emission computed tomography

SQUID

superconducting quantum interference device

VBM

voxel-based morphometry

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melcher, J.R. (2012). Human Brain Imaging of Tinnitus. In: Eggermont, J., Zeng, FG., Popper, A., Fay, R. (eds) Tinnitus. Springer Handbook of Auditory Research, vol 44. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3728-4_8

Download citation

Publish with us

Policies and ethics