Skip to main content

Evolution of Regulatory Networks: Nematode Vulva Induction as an Example of Developmental Systems Drift

  • Chapter
  • First Online:
Evolutionary Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

Changes in the developmental processes and developmental mechanisms can result in the modification of morphological structures and in the evolution of phenotypic novelty. But how do developmental processes evolve? One striking finding in modern biology is the confrontation of morphological diversity in multicellular organisms with the conserved blueprint of life—the small number of conserved signaling pathways and transcriptional regulators. Evolutionary developmental biology (evo-devo) tries to explain this discrepancy between macroscopic diversity and molecular uniformity. Selected case studies in evo-devo models allowed detailed insight into the mechanisms of evolutionary changes and might help solving this problem. Here, I compare the formation of vulva development between Caenorhabditis elegans and the evo-devo model Pristionchus pacificus. More than 3 decades of work in C. elegans and 15 years in P. pacificus provide an insight into the molecular mechanisms of developmental change during vulva evolution. C. elegans and P. pacificus differ first, in the type of the signaling system used for vulva induction; second, the cells required for the inductive interactions; third, the logic of the signal system, and finally, the sequence and structure of peptide domains in otherwise conserved proteins. Nonetheless, the vulva is formed from the same three cells in both nematodes. I discuss redundancy as an evolutionary mechanism to explain developmental systems drift, a theory predicting conserved morphological structures to be generated by diverse molecular regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark SG, Stern MJ, Horvitz HR (1992) C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356(6367):340–344

    Google Scholar 

  2. Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, Fulton L, Fulton R, Godfrey J, Minx P, Mitreva M, Roeseler W, Tian H, Witte H, Yang SP, Wilson RK, Sommer RJ (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40(10):1193–1198

    Article  PubMed  CAS  Google Scholar 

  3. Eisenmann DM, Maloof JN, Simske JS, Kenyon C, Kim SK (1998) The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development 125(18):3667–3680

    PubMed  CAS  Google Scholar 

  4. Herrmann M, Mayer WE, Hong RL, Kienle S, Minasaki R, Sommer RJ (2007) The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zool Sci 24(9):883–889

    Article  PubMed  CAS  Google Scholar 

  5. Herrmann M, Kienle S, Rochat J, Mayer W, Sommer RJ (2010) Haplotype diversity of the nematode Pristionchus pacificus on Réunion in the Indian Ocean suggests multiple independent invasions. Biol J Linn Soc 100:170–179

    Article  Google Scholar 

  6. Inoue T, Oz HS, Wiland D, Gharib S, Deshpande R, Hill RJ, Katz WS, Sternberg PW (2004) C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell 118(6):795–806

    Google Scholar 

  7. Kimble J (1981) Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev Biol 87(2):286–300

    Article  PubMed  CAS  Google Scholar 

  8. Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DH, Felix MA (2007) Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol 17(22):1925–1937

    Article  PubMed  CAS  Google Scholar 

  9. Myers TR, Greenwald I (2007) Wnt signal from multiple tissues and lin-3/EGF signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans. Proc Natl Acad Sci USA 104(51):20368–20373

    Article  PubMed  CAS  Google Scholar 

  10. Schlager B, Wang X, Braach G, Sommer RJ (2009) Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode Pristionchus pacificus. Genesis 47:300–304

    Article  PubMed  CAS  Google Scholar 

  11. Seetharaman A, Cumbo P, Bojanala N, Gupta BP (2010) Conserved mechanism of Wnt signaling function in the specification of vulval precursor fates in C. elegans and C. briggsae. Dev Biol 346(1):128–139

    Google Scholar 

  12. Sigrist CB, Sommer RJ (1999) Vulva formation in Pristionchus pacificus relies on continuous gonadal induction. Dev Genes Evol 209(8):451–459

    Article  PubMed  CAS  Google Scholar 

  13. Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10(6):416–422

    PubMed  CAS  Google Scholar 

  14. Sommer RJ, Sternberg PW (1994) Changes of induction and competence during the evolution of vulva development in nematodes. Science 265(5168):114–118

    Article  PubMed  CAS  Google Scholar 

  15. Sommer RJ, Sternberg PW (1995) Evolution of cell lineage and pattern formation in the vulval equivalence group of rhabditid nematodes. Dev Biol 167(1):61–74

    Article  PubMed  CAS  Google Scholar 

  16. Sommer RJ, Sternberg PW (1996) Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. Curr Biol 6(1):52–59

    Article  PubMed  CAS  Google Scholar 

  17. Sommer RJ, Carta LK, Sternberg PW (1994) The evolution of cell lineage in nematodes. Dev Suppl 85–95

    Google Scholar 

  18. Sommer RJ, Carta LK, Kim SY, Sternberg PW (1996) Morphological, genetic and molecular description of Pristionchus pacificus sp n (Nematoda: Neodiplogastridae). Fund Appl Nematol 19(6):511–521

    Google Scholar 

  19. Sternberg PW (2005) Vulval development. WormBook 1–28

    Google Scholar 

  20. Tian H, Schlager B, Xiao H, Sommer RJ (2008) Wnt signaling induces vulva development in the nematode Pristionchus pacificus. Curr Biol 18(2):142–146

    Article  PubMed  CAS  Google Scholar 

  21. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3(2):109–119

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Sommer RJ (2011) Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol 9(7):e1001110

    Article  PubMed  CAS  Google Scholar 

  23. Yoon CH, Lee J, Jongeward GD, Sternberg PW (1995) Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269(5227):1102–1105

    Google Scholar 

  24. Zheng M, Messerschmidt D, Jungblut B, Sommer RJ (2005) Conservation and diversification of Wnt signaling function during the evolution of nematode vulva development. Nat Genet 37(3):300–304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I want to thank my many coworkers who have contributed with enthusiasm to the analysis of vulva formation in P. pacificus of nearly 2 decades. I thank Kostadinka Krause for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf J. Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sommer, R.J. (2012). Evolution of Regulatory Networks: Nematode Vulva Induction as an Example of Developmental Systems Drift. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_4

Download citation

Publish with us

Policies and ethics