Skip to main content

Phenotypic Plasticity and Robustness: Evolutionary Stability Theory, Gene Expression Dynamics Model, and Laboratory Experiments

  • Chapter
  • First Online:
Evolutionary Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

Plasticity and robustness, which are two basic concepts in the evolution of developmental dynamics, are characterized in terms of the variance of phenotype distribution. Plasticity concerns the response of a phenotype against environmental and genetic changes, whereas robustness is the degree of insensitivity against such changes. Note that the sensitivity increases with the variance, and the inverse of the variance works as a measure of the robustness. First, it is found that the response ratio is proportional to the phenotype variance, as described by extending the fluctuation–response relationship in statistical physics. Next, it is shown that through the course of robust evolution, the phenotype variance caused by genetic change decreases in proportion to that by noise during the developmental process. This evolution, resulting in increased robustness, is achieved only when the noise in the developmental process is sufficiently large; in other words, robustness to noise leads to robustness to mutation. For a system that achieves robustness in the phenotype, it is also found that the proportionality between the two variances also holds across different phenotypic traits. These general relationships for plasticity and robustness in terms of fluctuations are demonstrated using macroscopic phenomenological theory, simulations of gene-expression dynamics models with regulation networks, and laboratory selection experiments. It is also shown that an optimal noise level compatibility between robustness and plasticity is achieved to cope with a fluctuating environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe H, Go N (1980) Noninteracting local-structure model of folding and unfolding transition in globular proteins, I. Formulation. Biopolymers 20:1013

    Google Scholar 

  2. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  PubMed  CAS  Google Scholar 

  3. Ancel LW, Fontana W (2002) Plasticity, evolvability, and modularity in RNA. J Exp Zool 288:242–283

    Article  Google Scholar 

  4. Azevedo RBR et al (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440:87–90

    Article  PubMed  CAS  Google Scholar 

  5. Bar-Even A et al (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38:636–643

    Article  PubMed  CAS  Google Scholar 

  6. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  PubMed  CAS  Google Scholar 

  7. Callahan HS, Pigliucci M, Schlichting CD (1997) Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. Bioessays 19:519–525

    Article  PubMed  CAS  Google Scholar 

  8. Ciliberti S, Martin OC, Wagner A (2007) Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comp Biol 3:e15

    Article  Google Scholar 

  9. Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc Nat Acad Sci USA 100:1072–1077

    Article  PubMed  CAS  Google Scholar 

  10. Eigen M, Schuster P (1979) The hypercycle. Springer, Heidelberg

    Book  Google Scholar 

  11. Einstein A (1926) Investigation on the theory of Brownian movement. In: Furth R (ed) Collection of papers. Dover, New York (reprinted, 1956)

    Google Scholar 

  12. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1187

    Article  PubMed  CAS  Google Scholar 

  13. Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London

    Google Scholar 

  14. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford (reprinted, 1958)

    Google Scholar 

  15. Furusawa C, Suzuki T, Kashiwagi A, Yomo T, Kaneko K (2005) Ubiquity of log-normal distributions in intra-cellular reaction dynamics. Biophysics 1:25–31

    Article  CAS  Google Scholar 

  16. Futuyma DJ (1986) Evolutionary biology, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  17. Gibson G, Wagner GP (2000) Canalization in evolutionary genetics: a stabilizing theory? Bioessays 22:372–380

    Article  PubMed  CAS  Google Scholar 

  18. Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39:103–129

    Article  PubMed  CAS  Google Scholar 

  19. Haldane JBS (1954) The measurement of natural selection. Caryologia (suppl. to Atti del IX Congresso Internazionale di Genetica), pp 480–487

    Google Scholar 

  20. Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  21. Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97:2075–2080

    Article  PubMed  CAS  Google Scholar 

  22. Ito Y, Toyota H, Kaneko K, Yomo T (2009) How Evolution affects phenotypic fluctuation. Mol Syst Biol 5:148101

    Article  Google Scholar 

  23. Kaneko K (2002) Symbiotic sympatric speciation: compliance with interaction-driven phenotype differentiation from a single genotype. Popul Ecol 44:71–85

    Article  Google Scholar 

  24. Kaneko K (2006) Life: an introduction to complex systems biology. Springer, Heidelberg

    Google Scholar 

  25. Kaneko K (2007) Evolution of robustness to noise and mutation in gene expression dynamics. PLoS One 2:e434

    Article  PubMed  Google Scholar 

  26. Kaneko K (2008) Shaping robust system through evolution. Chaos 18:026112

    Google Scholar 

  27. Kaneko K (2009) Relationship among phenotypic plasticity, genetic and epigenetic fluctuations, robustness, and evolvability; Waddington’s legacy revisited under the spirit of Einstein. J BioSci 34:529–42

    Article  PubMed  Google Scholar 

  28. Kaneko K (2011) Proportionality between variances in gene expression induced by noise and mutation: consequence of evolutionary robustness. BMC Evol Biol 11:27

    Article  PubMed  Google Scholar 

  29. Kaneko K, Furusawa C (2006) An evolutionary relationship between genetic variation and phenotypic fluctuation. J Theor Biol 240:78–86

    Article  PubMed  Google Scholar 

  30. Kaneko K, Furusawa C (2008) Consistency principle in biological dynamical systems. Theor Biosci 127: 195–204

    Article  Google Scholar 

  31. Kaneko K, Yomo T (2000) Sympatric speciation: compliance with phenotype diversification from a single genotype. Proc Roy Soc B 267:2367–2373

    Article  CAS  Google Scholar 

  32. Kirschner MW, Gerhart JC (2005) The Plausibility of Life. Yale University Press, London

    Google Scholar 

  33. Kishimoto T et al (2010) Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution. PLoS Genet 6:e1001164

    Article  PubMed  Google Scholar 

  34. Kubo R, Toda M, Hashitsume N (1985) Statistical physics II (English translation). Springer, New York

    Google Scholar 

  35. Landry C et al (2007) Genetic properties influencing the evolvability of gene expression. Science 317:118–121

    Article  PubMed  CAS  Google Scholar 

  36. Lehner B, Kaneko K, 2011 A macroscopic relationship between fluctuation and response in biology. Cell Mol Life Sci 68:1005–1010

    Article  PubMed  CAS  Google Scholar 

  37. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101:10040–10046

    Google Scholar 

  38. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819

    Article  PubMed  CAS  Google Scholar 

  39. Mjolsness E, Sharp DH, Reisnitz J (1991) A connectionist model of development. J Theor Biol 152:429–453

    Article  PubMed  CAS  Google Scholar 

  40. Ohta T (2011) Near-neutrality, robustness, abd epigenetics. Genome Biol Evol 3:1034–1038

    Article  PubMed  CAS  Google Scholar 

  41. Onuchic JN, Wolynes PG, Luthey-Schulten Z, Socci ND (1995) Toward an outline of the topography of a realistic protein-folding funnel. Proc Natl Acad Sci USA 92:3626

    Article  PubMed  CAS  Google Scholar 

  42. Oosawa F (1975) Effect of the field fluctuation on a macromolecular system. J Theor Biol 52:175

    Article  PubMed  CAS  Google Scholar 

  43. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    Article  PubMed  Google Scholar 

  44. Price GR (1970) Selection and covariance. Nature 227:520–521

    Article  PubMed  CAS  Google Scholar 

  45. Sakata A, Hukushima K, Kaneko K (2009) Funnel landscape and mutational robustness as a result of evolution under thermal noise. Phys Rev Lett 102:148101

    Article  PubMed  Google Scholar 

  46. Salazar-Ciudad I, Garcia-Fernandez J, Sole RV (2000) Gene networks capable of pattern formation: from induction to reaction–diffusion. J Theor Biol 205:587–603

    Article  PubMed  CAS  Google Scholar 

  47. Sato K, Kaneko K (2007) Evolution equation of phenotype distribution: general formulation and application to error catastrophe. Phys Rev E75:061909

    Article  Google Scholar 

  48. Sato K, Ito Y, Yomo T, Kaneko K (2003) On the relation between fluctuation and response in biological systems. Proc Natl Acad Sci USA 100:14086–14090

    Article  PubMed  CAS  Google Scholar 

  49. Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. University of Chicago Press, Chicago (reprinted 1986)

    Google Scholar 

  50. Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528–10532

    Article  PubMed  CAS  Google Scholar 

  51. Spudich JL, Koshland DE Jr (1976) Non-genetic individuality: chance in the single cell. Nature 262:467–471

    Article  PubMed  CAS  Google Scholar 

  52. Stearns SC, Kaiser M, Kawecki TJ (1995) The differential genetic and environmental canalization of fitness components in Drosophila melanogaster J Evol Biol 8:539–557

    Google Scholar 

  53. de Visser JA et al (2003) Evolution and detection of genetic robustness. Evolution 57:1959–1972

    Article  PubMed  Google Scholar 

  54. Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  55. Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  56. Waddington CH (1957) The strategy of the genes. Allen & Unwin, London

    Google Scholar 

  57. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361

    Article  PubMed  CAS  Google Scholar 

  58. Wagner A (2005) Robustness and evolvability in living systems. Princeton University Press, Princeton

    Google Scholar 

  59. Wagner GP, Booth G, Bagheri-Chaichian H (1997) A population genetic theory of canalization. Evolution 51:329–347

    Article  Google Scholar 

  60. Wang J, Huang B, Xia X, Sun Z (2006) Funneled landscape leads to robustness of cellular networks: MAPK signal transduction. Biophys J 91:L54–L56

    Article  PubMed  CAS  Google Scholar 

  61. Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution 54:441–451

    PubMed  CAS  Google Scholar 

  62. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

I would like to thank C. Furusawa, T. Yomo, K. Sato, M. Tachikawa, S. Ishihara, and S. Sawai for continual discussions. This work was partially supported by a Grant-in-Aid for Scientific Research (No.21120004) on Innovative Areas “The study on the neural dynamics for understanding communication in terms of complex hetero systems” (No.4103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaneko, K. (2012). Phenotypic Plasticity and Robustness: Evolutionary Stability Theory, Gene Expression Dynamics Model, and Laboratory Experiments. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_12

Download citation

Publish with us

Policies and ethics