Skip to main content

Circadian Misalignment and Sleep Disruption in Shift Work: Implications for Fatigue and Risk of Weight Gain and Obesity

  • Chapter
  • First Online:
Sleep Loss and Obesity

Abstract

The interplay of circadian timing and metabolic physiology represents a new frontier in biomedical research. Emerging evidence from animal models indicates that circadian physiology impacts weight gain, including the observation of obesity in clock gene mutants and most recently the finding that food intake restricted to the habitual sleep time of mice leads to weight gain as compared to the same amount of food intake during the normal wake episode. Eating at night is common in work schedules with long work hours and with work operations during the nighttime hours (e.g., health care, emergency response, security personnel) and in circadian sleep disorders including, but not limited to, shift work disorder. Shift work and shift work disorder are associated with circadian misalignment, sleep disruption, and fatigue, all of which may contribute to weight gain and obesity via the modification of feeding hormones and perhaps total daily energy expenditure. Future research is needed to explore the impact of circadian misalignment/sleep disruption and the resulting fatigue on metabolic physiology in shift workers, the mechanisms underlying this association and to develop effective countermeasures to promote shift worker health and well-being.

Preparation of this manuscript was supported in part by NIH HL085705 and HL081761.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laposky AD, Bass J, Kohsaka A, Turek FW. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett. 2008;582(1):142–51.

    Article  PubMed  CAS  Google Scholar 

  2. Laposky AD, Turek FW. Physiologic and health consequences of circadian disruption (in animal models). Sleep Med Clin. 2009;4:127–42.

    Article  Google Scholar 

  3. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes. 2006;55(4):962–70.

    Article  PubMed  CAS  Google Scholar 

  4. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417(6884):78–83.

    Article  PubMed  CAS  Google Scholar 

  5. Davidson AJ, London B, Block GD, Menaker M. Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens. 2005;27(2–3):307–11.

    PubMed  CAS  Google Scholar 

  6. Davidson AJ, Castanon-Cervantes O, Stephan FK. Daily oscillations in liver function: diurnal vs circadian rhythmicity. Liver Int. 2004;24(3):179–86.

    Article  PubMed  Google Scholar 

  7. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA. 2002;99(16):10801–6.

    Article  PubMed  CAS  Google Scholar 

  8. Nystrom T, Nygren A, Sjoholm A. Persistent endothelial dysfunction is related to elevated C-reactive protein (CRP) levels in Type II diabetic patients after acute myocardial infarction. Clin Sci (Lond). 2005;108(2):121–8.

    Article  Google Scholar 

  9. Bray MS, Young ME. Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev. 2007;8(2):169–81.

    Article  PubMed  CAS  Google Scholar 

  10. Ishizaki M, Morikawa Y, Nakagawa H, Honda R, Kawakami N, Haratani T, et al. The influence of work characteristics on body mass index and waist to hip ratio in Japanese employees. Ind Health. 2004;42(1):41–9.

    Article  PubMed  Google Scholar 

  11. Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med. 2001;58(11):747–52.

    Article  PubMed  CAS  Google Scholar 

  12. Di Lorenzo L, De Pergola G, Zocchetti C, L’Abbate N, Basso A, Pannacciulli N, et al. Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry. Int J Obes Relat Metab Disord. 2003;27(11):1353–8.

    Article  PubMed  Google Scholar 

  13. Esquirol Y, Bongard V, Mabile L, Jonnier B, Soulat JM, Perret B. Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms. Chronobiol Int. 2009;26(3):544–59.

    Article  PubMed  Google Scholar 

  14. Ayas NT, White DP, Al Delaimy WK, Manson JE, Stampfer MJ, Speizer FE, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabet Care. 2003;26(2):380–4.

    Article  Google Scholar 

  15. Rogers NL, Dinges DF, Allison KC, Maislin G, Martino N, O’Reardon JP, et al. Assessment of sleep in women with night eating syndrome. Sleep. 2006;29(6):814–9.

    PubMed  Google Scholar 

  16. Goel N, Stunkard AJ, Rogers NL, Van Dongen HP, Allison KC, O’Reardon JP, et al. Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythms. 2009;24(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  17. Howell MJ, Schenck CH, Crow SJ. A review of nighttime eating disorders. Sleep Med Rev. 2009;13(1):23–34.

    Article  PubMed  Google Scholar 

  18. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73(6):379–96.

    Article  PubMed  CAS  Google Scholar 

  19. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB. Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002;22(3):977–90.

    PubMed  CAS  Google Scholar 

  20. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24(12):726–31.

    Article  PubMed  CAS  Google Scholar 

  21. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276(5316):1265–8.

    Article  PubMed  CAS  Google Scholar 

  22. Deurveilher S, Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005;130(1):165–83.

    Article  PubMed  CAS  Google Scholar 

  23. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML. A neural circuit for circadian regulation of arousal. Nat Neurosci. 2001;4(7):732–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rainnie DG, Grunze HC, McCarley RW, Greene RW. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science. 1994;263(5147):689–92.

    Article  PubMed  CAS  Google Scholar 

  25. Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience. 2003;119(4):913–8.

    Article  PubMed  CAS  Google Scholar 

  26. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.

    Article  PubMed  CAS  Google Scholar 

  27. Morse D, Sassone-Corsi P. Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci. 2002;25(12):632–7.

    Article  PubMed  CAS  Google Scholar 

  28. Berger RJ, Phillips NH. Comparative physiology of sleep, thermoregulation and metabolism from the perspective of energy conservation. Prog Clin Biol Res. 1990;345:41–50.

    PubMed  CAS  Google Scholar 

  29. Sack RL, Blood ML, Lewy AJ. Melatonin rhythms in night shift workers. Sleep. 1992;15(5):434–41.

    PubMed  CAS  Google Scholar 

  30. Dumont M, Benhaberou-Brun D, Paquet J. Profile of 24-h light exposure and circadian phase of melatonin secretion in night workers. J Biol Rhythms. 2001;16(5):502–11.

    Article  PubMed  CAS  Google Scholar 

  31. Smith MR, Cullnan EE, Eastman CI. Shaping the light/dark pattern for circadian adaptation to night shift work. Physiol Behav. 2008;95(3):449–56.

    Article  PubMed  CAS  Google Scholar 

  32. Wright Jr KP, Hull JT, Hughes RJ, Ronda JM, Czeisler CA. Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cogn Neurosci. 2006;18:508–21.

    Article  PubMed  Google Scholar 

  33. Wright Jr KP, Hull JT, Czeisler CA. Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol. 2002;283(6):R1370–7.

    PubMed  CAS  Google Scholar 

  34. Grady S, Aeschbach D, Wright Jr KP, Czeisler CA. Effect of modafinil on impairments in neurobehavioral performance and learning associated with extended wakefulness and circadian misalignment. Neuropsychopharmacology. 2010;35(9):1910–20.

    Article  PubMed  CAS  Google Scholar 

  35. Markwald RR, Lee-Chiong TL, Burke TM, Snider JA, Wright Jr KP. Effects of the melatonin MT-1/MT-2 agonist ramelteon on daytime body temperature and sleep. Sleep. 2010;33(6):825–31.

    PubMed  Google Scholar 

  36. Czeisler CA, Walsh JK, Roth T, Hughes RJ, Wright KP, Kingsbury L, et al. Modafinil for excessive sleepiness associated with shift-work sleep disorder. N Engl J Med. 2005;353(5):476–86.

    Article  PubMed  CAS  Google Scholar 

  37. Nguyen J, Wright Jr KP. Influence of weeks of circadian misalignment on leptin levels. Nat Sci Sleep. 2010;2:9–18.

    Google Scholar 

  38. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106(11):4453–8.

    Article  PubMed  CAS  Google Scholar 

  39. Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD. Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging. 2008;29(3):471–7.

    Article  PubMed  Google Scholar 

  40. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.

    Article  PubMed  CAS  Google Scholar 

  41. Waterhouse J, Minors D, Redfern P. Some comments on the measurement of circadian rhythms after time-zone transitions and during night work. Chronobiol Int. 1997;14(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  42. Boivin DB, James FO. Circadian adaptation to night-shift work by judicious light and darkness exposure. J Biol Rhythms. 2002;17(6):556–67.

    Article  PubMed  Google Scholar 

  43. Drake CL, Wright KP Jr. Shift work, shift work disorder, and jet lag. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Saunders;2011. p. 784–98.

    Google Scholar 

  44. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep. 2004;27(8):1453–62.

    PubMed  Google Scholar 

  45. Åkerstedt TA, Wright Jr KP. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med Clin. 2009;4:257–71.

    Article  PubMed  Google Scholar 

  46. Gold DR, Rogacz S, Bock N, Tosteson TD, Baum TM, Speizer FE, et al. Rotating shift work, sleep, and accidents related to sleepiness in hospital nurses. Am J Public Health. 1992;82(7):1011–4.

    Article  PubMed  CAS  Google Scholar 

  47. Axelsson J, Akerstedt T, Kecklund G, Lowden A. Tolerance to shift work-how does it relate to sleep and wakefulness? Int Arch Occup Environ Health. 2004;77(2):121–9.

    Article  PubMed  Google Scholar 

  48. Akerstedt T, Ingre M, Broman JE, Kecklund G. Disturbed sleep in shift workers, day workers, and insomniacs. Chronobiol Int. 2008;25(2):333–48.

    Article  PubMed  Google Scholar 

  49. Barger LK, Lockley SW, Rajaratnam SM, Landrigan CP. Neurobehavioral, health, and safety consequences associated with shift work in safety-sensitive professions. Curr Neurol Neurosci Rep. 2009;9(2):155–64.

    Article  PubMed  Google Scholar 

  50. Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.

    PubMed  CAS  Google Scholar 

  51. Achermann P, Borbely AA. Mathematical models of sleep regulation. Front Biosci. 2003;8:s683–93.

    Article  PubMed  Google Scholar 

  52. Dijk D-J, Edgar DM. Circadian and homeostatic control of wakefulness and sleep. In: Turek FW, Zee PC, editors. Regulation of sleep and wakefulness. New York: Marcel Dekker; 1999. p. 111–47.

    Google Scholar 

  53. Czeisler CA, Dijk D-J, Duffy JF. Entrained phase of the circadian pacemaker serves to stabilize alertness and performance throughout the habitual waking day. In: Ogilvie RD, Harsh JR, editors. Sleep onset: normal and abnormal processes. Washington, DC: American Psychological Association; 1994. p. 89–110.

    Chapter  Google Scholar 

  54. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15(5 Pt 1):3526–38.

    PubMed  CAS  Google Scholar 

  55. Zee PC, Wright KP Jr. Primary care update: shift work disorder. Elsevier Inc. 2010. p. 5–24.

    Google Scholar 

  56. Knutsson A, Hallquist J, Reuterwall C, Theorell T, Akerstedt T. Shiftwork and myocardial infarction: a case-control study. Occup Environ Med. 1999;56(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  57. Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, et al. A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med. 2003;163(2):205–9.

    Article  PubMed  Google Scholar 

  58. Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003;53(2):103–8.

    Article  Google Scholar 

  59. Harrington JM. Health effects of shift work and extended hours of work. Occup Environ Med. 2001;58:68–72.

    Article  Google Scholar 

  60. Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health. 2005;47(2):89–95.

    Article  PubMed  Google Scholar 

  61. Harrington JM. Shift work and health–a critical review of the literature on working hours. Ann Acad Med Singapore. 1994;23(5):699–705.

    PubMed  CAS  Google Scholar 

  62. Segawa K, Nakazawa S, Tsukamoto Y, Kurita Y, Goto H, Fukui A, et al. Peptic ulcer is prevalent among shift workers. Dig Dis Sci. 1987;32(5):449–53.

    Article  PubMed  CAS  Google Scholar 

  63. Mozurkewich EL, Luke B, Avni M, Wolf FM. Working conditions and adverse pregnancy outcome: a meta-analysis. Obstet Gynecol. 2000;95(4):623–35.

    Article  PubMed  CAS  Google Scholar 

  64. Zhu JL, Hjollund NH, Andersen AM, Olsen J. Shift work, job stress, and late fetal loss: the national birth cohort in Denmark. J Occup Environ Med. 2004;46(11):1144–9.

    Article  PubMed  Google Scholar 

  65. Zhu JL, Hjollund NH, Olsen J. Shift work, duration of pregnancy, and birth weight: the national birth cohort in Denmark. Am J Obstet Gynecol. 2004;191(1):285–91.

    Article  PubMed  Google Scholar 

  66. Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES. Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer. 2005;41(13):2023–32.

    Article  PubMed  Google Scholar 

  67. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95(11):825–8.

    Article  PubMed  Google Scholar 

  68. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst. 2001;93(20):1563–8.

    Article  PubMed  CAS  Google Scholar 

  69. Skipper Jr JK, Jung FD, Coffey LC. Nurses and shiftwork: effects on physical health and mental depression. J Adv Nurs. 1990;15(7):835–42.

    Article  PubMed  Google Scholar 

  70. Nagaya T, Yoshida H, Takahashi H, Kawai M. Markers of insulin resistance in day and shift workers aged 30-59 years. Int Arch Occup Environ Health. 2002;75(8):562–8.

    Article  PubMed  CAS  Google Scholar 

  71. van Amelsvoort LG, Schouten EG, Kok FJ. Duration of shiftwork related to body mass index and waist to hip ratio. Int J Obes Relat Metab Disord. 1999;23(9):973–8.

    Article  PubMed  Google Scholar 

  72. Scott AJ, LaDou J. Shiftwork: effects on sleep and health with recommendations for medical surveillance and screening. Occup Med. 1990;5(2):273–99.

    PubMed  CAS  Google Scholar 

  73. Knutsson A, Boggild H. Shiftwork and cardiovascular disease: review of disease mechanisms. Rev Environ Health. 2000;15(4):359–72.

    Article  PubMed  CAS  Google Scholar 

  74. Penev PD, Kolker DE, Zee PC, Turek FW. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol. 1998;275(6 Pt 2):H2334–7.

    PubMed  CAS  Google Scholar 

  75. Porcu S, Bellatreccia A, Ferrara M, Casagrande M. Performance, ability to stay awake, and tendency to fall asleep during the night after a diurnal sleep with temazepam or placebo. Sleep. 1997;20(7):535–41.

    PubMed  CAS  Google Scholar 

  76. Walsh JK, Schweitzer PK, Anch AM, Muehlbach MJ, Jenkins NA, Dickins QS. Sleepiness alertness on a simulated night-shift following sleep at home with Triazolam. Sleep. 1991;14(2):140–6.

    PubMed  CAS  Google Scholar 

  77. Sack RL, Auckley D, Auger R, Carskadon MA, Wright Jr KP, Vitiello MV, et al. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders: an American Academy of Sleep Medicine review. Sleep. 2007;30(11):1456–79.

    Google Scholar 

  78. Sack RL, Auckley D, Auger R, Carskadon MA, Wright Jr KP, Vitiello MV, et al. Circadian rhythm sleep disorders: Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm: an American Academy of Sleep Medicine review. Sleep. 2007;30(11):1480–97.

    Google Scholar 

  79. Czeisler CA, Walsh JK, Wesnes KA, Arora S, Roth T. Armodafinil for treatment of excessive sleepiness associated with shift work disorder: a randomized controlled study. Mayo Clin Proc. 2009;84(11):958–72.

    PubMed  CAS  Google Scholar 

  80. Leger D, Scheuermaier K, Roger M. The relationship between alertness and sleep in a population of 769 elderly insomniacs with and without treatment with zolpidem. Arch Gerontol Geriatr. 1999;29(2):165–73.

    Article  PubMed  CAS  Google Scholar 

  81. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab. 2005;90(5):2537–44.

    Article  PubMed  CAS  Google Scholar 

  82. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377.

    Article  PubMed  CAS  Google Scholar 

  83. Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, et al. CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J Atheroscler Thromb. 2005;12(3):169–74.

    Article  PubMed  CAS  Google Scholar 

  84. Marcheva B, Ramsey KM, Affinati A, Bass J. Clock genes and metabolic disease. J Appl Physiol. 2009;107(5):1638–46.

    Article  PubMed  CAS  Google Scholar 

  85. Scott EM, Carter AM, Grant PJ. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond). 2007;32(4):658–62.

    Article  CAS  Google Scholar 

  86. Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA. 2007;104(36):14412–7.

    Article  PubMed  CAS  Google Scholar 

  87. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437–40.

    Article  PubMed  CAS  Google Scholar 

  88. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA. 2005;102(34):12071–6.

    Article  PubMed  CAS  Google Scholar 

  89. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA. 2008;105(39):15172–7.

    Article  PubMed  CAS  Google Scholar 

  90. Miller DS, Mumford P. Gluttony. 1. An experimental study of overeating low- or high-protein diets. Am J Clin Nutr. 1967;20(11):1212–22.

    PubMed  CAS  Google Scholar 

  91. Grunwald GK, Melanson EL, Forster JE, Seagle HM, Sharp TA, Hill JO. Comparison of methods for achieving 24-hour energy balance in a whole-room indirect calorimeter. Obes Res. 2003;11(6):752–9.

    Article  PubMed  Google Scholar 

  92. Hill JO, Melanson EL. Overview of the determinants of overweight and obesity: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S515–21.

    PubMed  CAS  Google Scholar 

  93. Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol. 2011;589(Pt 1):235–44.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang K, Sun M, Werner P, Kovera AJ, Albu J, Pi-Sunyer FX, et al. Sleeping metabolic rate in relation to body mass index and body composition. Int J Obes. 2002;26:376–83.

    Article  CAS  Google Scholar 

  95. Goldberg GR, Prentice AM, Davies HL, Murtgatroyed PR. Overnight and basal metabolic rates in men and women. Eur J Clin Nutr. 1988;42(2):137–44.

    PubMed  CAS  Google Scholar 

  96. Everson CA, Smith CB, Sokoloff L. Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J Neurosci. 1994;14(11 Pt 2):6769–78.

    PubMed  CAS  Google Scholar 

  97. Bergmann BM, Everson CA, Kushida CA, Fang VS, Leitch CA, Schoeller DA, et al. Sleep deprivation in the rat: V. energy use and mediation. Sleep. 1989;12:31–41.

    PubMed  CAS  Google Scholar 

  98. Spengler CM, Czeisler CA, Shea SA. An endogenous circadian rhythm of respiratory control in humans. J Physiol. 2000;526(Pt 3):683–94.

    Article  PubMed  CAS  Google Scholar 

  99. Krauchi K, WirzJustice A. Circadian-rhythm of heat-production, heart-rate, and skin and core temperature under unmasking conditions in men. Am J Physiol. 1994;267(3):R819–29.

    PubMed  CAS  Google Scholar 

  100. Baumann CR, Bassetti CL. Hypocretins (orexins): clinical impact of the discovery of a neurotransmitter. Sleep Med Rev. 2005;9(4):253–68.

    Article  PubMed  Google Scholar 

  101. Zheng H, Patterson LM, Berthoud HR. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol. 2005;485(2):127–42.

    Article  PubMed  CAS  Google Scholar 

  102. Szekely M, Petervari E, Balasko M, Hernadi I, Uzsoki B. Effects of orexins on energy balance and thermoregulation. Regul Pept. 2002;104(1–3):47–53.

    Article  PubMed  CAS  Google Scholar 

  103. Scammell TE. Wakefulness: an eye-opening perspective on orexin neurons. Curr Biol. 2001;11(19):R769–71.

    Article  PubMed  CAS  Google Scholar 

  104. Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci. 1998;18(1):559–72.

    PubMed  CAS  Google Scholar 

  105. Bartness TJ, Song CK, Demas GE. SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms. 2001;16(3):196–204.

    PubMed  CAS  Google Scholar 

  106. Chin-Chance C, Polonsky KS, Schoeller DA. Twenty-four-hour leptin levels respond to cumulative short-term energy imbalance and predict subsequent intake. J Clin Endocrinol Metab. 2000;85(8):2685–91.

    Article  PubMed  CAS  Google Scholar 

  107. Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood). 2001;226(11):963–77.

    CAS  Google Scholar 

  108. Weigle DS, Cummings DE, Newby PD, Breen PA, Frayo RS, Matthys CC, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J Clin Endocrinol Metab. 2003;88(4):1577–86.

    Article  PubMed  CAS  Google Scholar 

  109. Sinha MK, Opentanova I, Ohannesian JP, Kolaczynski JW, Heiman ML, Hale J, et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest. 1996;98(6):1277–82.

    Article  PubMed  CAS  Google Scholar 

  110. Simon C, Gronfier C, Schlienger JL, Brandenberger G. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 1998;83(6):1893–9.

    Article  PubMed  CAS  Google Scholar 

  111. Schoeller DA, Cella LK, Sinha MK, Caro JF. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest. 1997;100(7):1882–7.

    Article  PubMed  CAS  Google Scholar 

  112. Kelly TL, Neri DF, Grill JT, Ryman D, Hunt PD, Dijk DJ, et al. Nonentrained circadian rhythms of melatonin in submariners scheduled to an 18-hour day. J Biol Rhythms. 1999;14(3):190–6.

    Article  PubMed  CAS  Google Scholar 

  113. Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1647–64.

    PubMed  CAS  Google Scholar 

  114. Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab. 2003;88(6):2838–43.

    Article  PubMed  CAS  Google Scholar 

  115. Chan JL, Bluher S, Yiannakouris N, Suchard MA, Kratzsch J, Mantzoros CS. Regulation of circulating soluble leptin receptor levels by gender, adiposity, sex steroids, and leptin: observational and interventional studies in humans. Diabetes. 2002;51(7):2105–12.

    Article  PubMed  CAS  Google Scholar 

  116. Spiegel K, Leproult R, L’Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71.

    Article  PubMed  CAS  Google Scholar 

  117. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–50.

    PubMed  Google Scholar 

  118. Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):1–8.

    Article  CAS  Google Scholar 

  119. van der Lely AJ, Tschop M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev. 2004;25(3):426–57.

    Article  PubMed  CAS  Google Scholar 

  120. Dzaja A, Dalal MA, Himmerich H, Uhr M, Pollmacher T, Schuld A. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab. 2004;286(6):E963–7.

    Article  PubMed  CAS  Google Scholar 

  121. Morris CJ, Fullick S, Gregson W, Clarke N, Doran D, MacLaren D, et al. Paradoxical post-exercise responses of acylated ghrelin and leptin during a simulated night shift. Chronobiol Int. 2010;27(3):590–605.

    Article  PubMed  CAS  Google Scholar 

  122. Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–33.

    Article  PubMed  CAS  Google Scholar 

  123. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435–41.

    PubMed  Google Scholar 

  124. Persson M, Martensson J. Situations influencing habits in diet and exercise among nurses working night shift. J Nurs Manag. 2006;14(5):414–23.

    Article  PubMed  CAS  Google Scholar 

  125. Faugier J, Lancaster J, Pickles D, Dobson K. Barriers to healthy eating in the nursing profession: Part 1. Nurs Stand. 2001;15(36):33–6.

    Google Scholar 

  126. Wong H, Wong MC, Wong SY, Lee A. The association between shift duty and abnormal eating behavior among nurses working in a major hospital: a cross-sectional study. Int J Nurs Stud. 2010;47(8):1021–7.

    Article  PubMed  Google Scholar 

  127. Van Strien T, Rookus MA, Bergers GP, Frijters JE, Defares PB. Life events, emotional eating and change in body mass index. Int J Obes. 1986;10(1):29–35.

    PubMed  Google Scholar 

  128. Lennernas M, Hambraeus L, Akerstedt T. Shift related dietary intake in day and shift workers. Appetite. 1995;25(3):253–65.

    Article  PubMed  CAS  Google Scholar 

  129. de Assis MA, Nahas MV, Bellisle F, Kupek E. Meals, snacks and food choices in Brazilian shift workers with high energy expenditure. J Hum Nutr Diet. 2003;16(4):283–9.

    Article  PubMed  Google Scholar 

  130. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043–5.

    Article  PubMed  CAS  Google Scholar 

  131. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2.

    Article  Google Scholar 

  132. Oishi K. Disrupted light-dark cycle induces obesity with hyperglycemia in genetically intact animals. Neuro Endocrinol Lett. 2009;30(4):458–61.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH/NCRR Colorado CTSI Grant Number UL1 RR025780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth P. Wright Jr. PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Markwald, R.R., Wright, K.P. (2012). Circadian Misalignment and Sleep Disruption in Shift Work: Implications for Fatigue and Risk of Weight Gain and Obesity. In: Shiromani, P., Horvath, T., Redline, S., Van Cauter, E. (eds) Sleep Loss and Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3492-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3492-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3491-7

  • Online ISBN: 978-1-4614-3492-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics