Skip to main content

Cell Membrane Repair Pathway Involves Sensing of Dynamics of Caveolae and Caspase-1

  • Conference paper
  • First Online:
Biochemical Roles of Eukaryotic Cell Surface Macromolecules

Part of the book series: Advances in Experimental Medicine and Biology ((volume 749))

Abstract

Mere binding of a pore forming toxin’s monomer to the cell surface is not anticipated to modulate cellular signalling. We have shown earlier that the binding of H35N, a membrane bound monomer of α-HL, to the host cell arrests the dynamics of caveolae at the cell surface and initiate the membrane repair mechanism involving caspase-1-dependent activation of sterol regulatory element-binding protein-1. Here, we show that the process of membrane repair induced by H35N involved a decrease in cytosolic potassium, activation of sterol regulatory element-binding protein-1 and -2, which in turn promote cell survival. Moreover, arrest of the dynamics of caveolae by silencing of the kinases involved in kiss and run dynamics of the caveolae also lead to activation of SREBP-1 proving that the loss of dynamics of caveolae may act as sensor for the target cell to activate the repair process. Our data reveals that membrane repair pathway involves sensing of loss of dynamics of caveolae

[Please note that all videos referenced in this chapter can be viewed online through Springer.Extras.com.]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami L, van der Goot FG (1999) Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol 147:175–184

    Article  PubMed  CAS  Google Scholar 

  • Abrami L, Fivaz M, van der Goot FG (2000) Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol 8:168–172

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM (1996) Crossing the hydrophobic barrier: insertion of membrane proteins. Science 274:1850–1851

    Article  PubMed  CAS  Google Scholar 

  • Fivaz M, Abrami L, Tsitrin Y, van der Goot FG (2001) Not as simple as just punching a hole. Toxicon 39:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46

    Article  PubMed  CAS  Google Scholar 

  • Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Shimomura I (1999) Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr Opin Lipidol 10:143–150

    Article  PubMed  CAS  Google Scholar 

  • Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci USA 101:10995–11000

    Article  PubMed  CAS  Google Scholar 

  • Krishnasastry M, Walker B, Braha O, Bayley H (1994) Surface labeling of key residues during assembly of the transmembrane pore formed by staphylococcal alpha-hemolysin. FEBS Lett 356:66–71

    Article  PubMed  CAS  Google Scholar 

  • Lesieur C, Vecsey-Semjen B, Abrami L, Fivaz M, Gisou vdG (1997) Membrane insertion: the strategies of toxins (review). Mol Membr Biol 14:45–64

    Article  PubMed  CAS  Google Scholar 

  • Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

    PubMed  CAS  Google Scholar 

  • Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    Article  PubMed  CAS  Google Scholar 

  • Ratner AJ, Hippe KR, Aguilar JL, Bender MH, Nelson AL, Weiser JN (2006) Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem 281:12994–12998

    Article  PubMed  CAS  Google Scholar 

  • Rossjohn J, Feil SC, McKinstry WJ, Tsernoglou D, Van der GG, Buckley JT, Parker MW (1998) Aerolysin–a paradigm for membrane insertion of beta-sheet protein toxins? J Struct Biol 121:92–100

    Article  PubMed  CAS  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SS, Pany S, Sneh A, Ahmed N, Rahman A, Musti KV (2009) Membrane bound monomer of Staphylococcal alpha-hemolysin induces caspase activation and apoptotic cell death despite initiation of membrane repair pathway. PLoS One 4:e6293

    Article  PubMed  Google Scholar 

  • Vandana S, Raje M, Krishnasastry MV (1997) The role of the amino terminus in the kinetics and assembly of alpha-hemolysin of Staphylococcus aureus. J Biol Chem 272:24858–24863

    Article  PubMed  CAS  Google Scholar 

  • Vandana S, Navneet S, Surinder K, Krishnasastry MV (2003) Modulation of EGF receptor autophosphorylation by alpha-hemolysin of Staphylococcus aureus via protein tyrosine phosphatase. FEBS Lett 535:71–76

    Article  PubMed  CAS  Google Scholar 

  • Vijayvargia R, Suresh CG, Krishnasastry MV (2004) Functional form of Caveolin-1 is necessary for the assembly of alpha-hemolysin. Biochem Biophys Res Commun 324:1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL (1996) Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J 15:1012–1020

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank G. C. Mishra for critical support and comments, Mr. Anil Lotke and Ms. Ashwin Atre for technical assistance. SS. is recipient of senior research fellowship from UGC. The financial assistance was provided by the Department of Biotechnology, Government of India.

Financial Assistance The financial assistance for the work was provided by Department of Biotechnology, Government of India, India.

Competing Interests None of the authors have any competing parallel interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya S. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Srivastava, S.S., Krishnasastry, M.V. (2012). Cell Membrane Repair Pathway Involves Sensing of Dynamics of Caveolae and Caspase-1. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_9

Download citation

Publish with us

Policies and ethics