Skip to main content

The Role of Reactive Oxygen Species in Ocular Malignancy

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Increased production of reactive oxygen species (ROS) is an attribute of malignant cells and is linked to the development of many of the characteristics considered “hallmarks of cancer (Hanahan and Weinberg, Cell 144(5), 2011, 646–674).” Among these are sustained proliferative signaling, induction of new vascular growth, promotion of invasion, and metastatic potential. Maintaining the balance between the beneficial biological functions of ROS and the dysregulation seen in human disease such as cancer, presents a daunting conundrum in the future of oncology research. ROS involvement is pervasive throughout the process of tumorigenesis and subsequent cancer growth, yet the response to both pro- and antioxidant based therapy is varied. We will review the ROS species in the pathogenesis of primary ocular malignancy with consideration of potential targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  2. Droge W (2002) Free Radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    PubMed  CAS  Google Scholar 

  3. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd ed. Oxford University Press

    Google Scholar 

  4. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244(22):6056–6063

    PubMed  CAS  Google Scholar 

  5. Lu W, Ogasawara MA, Huang P (2007) Models of reactive oxygen species in cancer. Drug Discov Today Dis Models 4(2):67–73

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kovacic P, Jacintho JD (2001) Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8(7):773–796

    Article  PubMed  CAS  Google Scholar 

  7. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J of Biochem Cell Bio 39:44–84

    Article  CAS  Google Scholar 

  8. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-realted macular degeneration. Surv Ophthalmol 45(2):115–134

    Article  PubMed  CAS  Google Scholar 

  9. van Reyk DM, Gillies MC, Davies MJ (2003) The retina: oxidative stress and diabetes. Redox Rep 8(4):187–192

    Article  PubMed  CAS  Google Scholar 

  10. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Rev 8:579–591

    CAS  Google Scholar 

  11. Kivela T (2009) The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Brit J Ophthalmol 93:1129–1131

    Article  Google Scholar 

  12. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646

    Article  PubMed  CAS  Google Scholar 

  13. Parulekar MV (2010) Retinoblastoma—current treatment and future direction. Early Hum Dev 86(10):619–625

    Article  PubMed  Google Scholar 

  14. Eagle Jr. RC (2012) The pathology of ocular cancer. Eye 2012:1–9

    Google Scholar 

  15. Hu D, Yu GP, McCormick SA, Schneider S, Finger PT (2005) Population based incidence of uveal melanoma in various races and ethnic groups. Am J Ophthalmol 140:612–617

    Article  PubMed  Google Scholar 

  16. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11(4):173–186

    Article  PubMed  CAS  Google Scholar 

  17. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem-Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  18. Vandhana S, Lakshmi TSR, Indra D, Deepa PR, Krishnakumar S (2012) Microarray analysis and biochemical correlations of oxidative stress responsive genes in retinoblastoma. Curr Eye Res 37(9):830–841

    Article  PubMed  CAS  Google Scholar 

  19. Missotten GS, Schlingemann RO, Jager MJ (2010) Angiogenesis and vascular endothelial growth factors in intraocular tumors. Dev Ophthalmol 46:123–132

    Article  PubMed  Google Scholar 

  20. Stitt AW, Simpson DAC, Boocock C, Gardiner TA, Murphy GM, Archer DB (1998) Expression of vascular endothelial growth factor (VEGF) and its receptors is regulated in eyes with intra-ocular tumors. J Pathol 186:306–312

    Article  PubMed  CAS  Google Scholar 

  21. Khromova NV, Kopnin PB, Stephanova EV, Agapova LS Kopnin BP (2009) P53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Can Lett 276:143–151

    Article  CAS  Google Scholar 

  22. Chan HS, Canton MD, Gallie BL (1989) Chemosensitivity and multidrug resistance to antineoplastic drugs in retinoblastoma cell lines. Anticancer Res 9:469–474

    PubMed  CAS  Google Scholar 

  23. Chan HS, Thorner PS, Haddad G, Gallie BL (1991) Multidrug-resistant phenotype in retinoblastoma correlates with P-glycoprotein expression. Opthalmol 98(9):1425–1431

    Article  CAS  Google Scholar 

  24. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5(12):2573–2577

    Article  PubMed  CAS  Google Scholar 

  25. Abramson DH (2010) Super selective ophthalmic artery delivery of chemotherapy for intraocular retinoblastoma: ‘chemosurgery’. Br J Ophtalmol 94:396–399

    Article  Google Scholar 

  26. Lee SY, Kim DK, Cho JH, Koh JY, Yoon YH (2008) Inhibitory effect of bevacizumad on the angiogenesis and growth of retinoblastoma. Arch Ophthalmol 126(7):953–958

    Article  PubMed  CAS  Google Scholar 

  27. Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM et al (2011) Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 32:2918–2929

    Article  PubMed  CAS  Google Scholar 

  28. Cai X, Sezate SA, Seal S, McGinnis JF (2012) Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 33(34):877–881

    Article  CAS  Google Scholar 

  29. Zhang J, Schweers B, Dyer MA (2004) The first knockout mouse model of retinoblastoma. Cell Cycle 3(7):952–959

    Article  PubMed  CAS  Google Scholar 

  30. Klump KE, Kiosseva S, Seal S, Dyer MA, McGinnis JF (2012) Therapeutic inhibition of retinoblastoma by nanoceria. ARVO Abstr:6549

    Google Scholar 

  31. Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF (2011) Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One 6(2):1–10

    Google Scholar 

  32. Kiosseva S, Seal S, McGinnis JF (2012) Inherited neovascular retinal lesions are regressed by nanoceria-induced changes in expression of multiple cytokine and growth factor genes. ARVO Abstr:421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Klump .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Klump, K., McGinnis, J. (2014). The Role of Reactive Oxygen Species in Ocular Malignancy. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_82

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_82

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics