Skip to main content

Aging of the Brain

  • Reference work entry
Neuroscience in the 21st Century

Abstract

An increasing number of persons live for nine or more decades and enjoy the benefits of a well-functioning brain until the end of their life. In that respect, the cognitive performance in later life and the quality maintenance of the brain are amazing biological phenomena. Since most nerve cells are generated during pregnancy and have to survive an active lifetime, the brain has to be endowed with a maintenance machinery of surprising long-term quality. During successful, that is, non-pathological, aging in most brain regions, there is very little or no evidence for a decrease in numbers of neurons. In some brain structures, a limited reduction of nerve cells may occur, but it is generally conceived that aging and aging-related cognitive impairments are not the result of massive cell loss but rather the result of synaptic changes, receptor dysfunction or signaling deficits, and metabolic decline. Besides, nerve cell loss during normal aging may be compensated by synaptogenesis, dendritic branching, or in certain brain structures like dentate gyrus by neurogenesis from progenitor stem cells. Yet most human individuals suffer from a mild but life-disturbing condition we call aging-related memory impairment (AMI). In this chapter, some of the mechanisms will be shortly explored that are considered to be causal to non-pathological deterioration of cognitive faculties. In particular several cellular and molecular neuronal changes will be addressed that occur during aging, the consequences for interneuronal communication and membrane potential, the blood supply to the brain and cerebrovascular condition, and some observations on the protective neuroimmune system of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AHP:

Afterhyperpolarization

AKAP:

A-kinase-anchoring protein

AMI:

Aging-related memory impairment

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

ApoE:

Apolipoprotein E

APP:

Amyloid precursor protein

ARA:

Arachidonic acid

Arc:

Activity-regulated cytoskeletal gene

ATP:

Adenosine triphosphate

Aβ:

Amyloid beta

BDNF:

Brain-derived neurotrophic factor

BOLD:

Blood-oxygen level dependent (imaging)

CA1:

Cornu ammonis1 (2,3)

CAMK:

Calcium-calmodulin kinase

CNS:

Central nervous system

DA:

Dopamine

DHA:

Docosahexaenoic acid

fMRI:

Functional magnetic resonance imaging

GABA:

Gamma-aminobutyric acid

GAD:

Glutamic acid decarboxylase

IEG:

Immediate early genes

IL-1:

Interleukin-1 (4, 6, 10)

IP3:

Inositol triphosphate

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

MWM:

Morris water maze

NF-κB:

Nuclear factor kappa B

NGF:

Nerve growth factor

NMDA:

N-methyl d-aspartate

PFC:

Prefrontal cortex

PIP2:

Phosphatidylinositol-biphosphate

PKB:

Protein kinase B (Akt)

PKCγ:

Protein kinase C gamma

PUFA:

Polyunsaturated fatty acid

RACK:

Receptor for activated C-kinase

TIA:

Transient ischemic attack

TNF:

Tumor necrosis factor

VDCC:

Voltage-dependent calcium channel

Further Reading

  • Barcelo-Coblijn G, Hogyes E, Kitajka K, Puskás LG, Zvara A, Hackler L Jr, Nyakas C, Penke Z, Farkas T (2003) Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci USA 100:11321–11326

    Article  PubMed  CAS  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  PubMed  CAS  Google Scholar 

  • Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC (2000) Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosc 12(Suppl 2):24–34

    Article  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the aged brain. Nat Rev Neurosci 7:30–40

    Article  PubMed  CAS  Google Scholar 

  • Dickstein DL, Kabaso D, Rocher AB, Luebke JI, Wearne SL, Hof PR (2007) Changes in the structural complexity of the aged brain. Aging Cell 6(3):275–284

    Article  PubMed  CAS  Google Scholar 

  • Disterhoft JF, Oh MM (2006) Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 29:587–599

    Article  PubMed  CAS  Google Scholar 

  • Farkas E, Luiten PGM (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    Article  PubMed  CAS  Google Scholar 

  • Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22:RC216 (1)–RC216 (7)

    Google Scholar 

  • Gaykema RP, Nyakas C, Horvath E, Hersh LB, Majtenyi C, Luiten PG (1992) Cholinergic fiber aberrations in nucleus basalis lesioned rat and Alzheimer’s disease. Neurobiol Aging 13:441–448

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21:5568–5573

    PubMed  CAS  Google Scholar 

  • Havekes R, Abel T, Van der Zee EA (2011) The cholinergic system and neostriatal memory functions. Behav Brain Res 221:412–423

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Verkhratsky A (1996) Calcium homeostasis in aged neurons. Life Sci 59:451–459

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Pitler TA (1984) Prolonged Ca2+ -dependent afterhyperpolarization in hippocampal neurons of aged rats. Science 226:1089–1092

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Ostroveanu A, Van der Zee EA, Dolga AM, Luiten PG, Eisel UL, Nijholt IM (2007) A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory. Brain Res 1145:97–107

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-a. Nature 440:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Tombaugh GC, Rowe WB, Rose GM (2005) The slow afterhyperpolarization in hippocampal CA1 neurons covaries in aged Fisher 344 rats. J Neurosci 25:2609–2616

    Article  PubMed  CAS  Google Scholar 

  • Van der Zee EA, Naber PA, Disterhoft JF (1997) Age-dependent changes in the immunoreactivity for neurofilaments in rabbit hippocampus. Neuroscience 79:103–116

    Article  PubMed  Google Scholar 

  • Van der Zee EA, Palm IF, O’Connor M, Maizels ET, Hunzicker-Dunn M, Disterhoft JF (2004) Aging-related alterations in the distribution of Ca(2+)-dependent PKC isoforms in rabbit hippocampus. Hippocampus 14:849–860

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Toescu EC (1998) Calcium and neuronal aging. Trends Neurosci 21:2–7

    Article  PubMed  CAS  Google Scholar 

  • Wood WG, Schroeder F, Igbavboa U, Avdulov NA, Chochina SV (2002) Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol Aging 23:685–694

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Luiten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Luiten, P., Nyakas, C., Eisel, U., van der Zee, E. (2013). Aging of the Brain. In: Pfaff, D.W. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1997-6_84

Download citation

Publish with us

Policies and ethics