Skip to main content

Spinal Interneurons

  • Reference work entry
Neuroscience in the 21st Century

Abstract

This chapter deals with the neurons that constitute the majority of spinal neurons and are the main source of input to motoneurons, and therefore of critical importance for all motor reactions. The description of spinal interneurons focuses on the properties of their main populations and on the operation of basic interneuronal networks, both in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C T and L segments:

Cervical, thoracic and lumbar spinal cord segments

EPSPs:

Excitatory postsynaptic potentials

GABA:

Gamma aminobutyric acid

HRP:

Horseradish peroxidise

IPSPs:

Inhibitory postsynaptic potentials

NA:

Noradrenaline

5-HT:

Serotonin

VGLUT1:

Vesicular glutamate transporter one

VGLUT2:

Vesicular glutamate transporter two

WGA:

Wheat germ agglutinin

References

  • Alvarez FJ, Fyffe RE (2007) The continuing case for the Renshaw cell. J Physiol 584:31–45

    Article  PubMed  CAS  Google Scholar 

  • Alvarez FJ, Dewey DE, Harrington DA, Fyffe RE (1997) Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J Comp Neurol 379:150–170

    Article  PubMed  CAS  Google Scholar 

  • Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. J Comp Neurol 493:177–192

    Article  PubMed  CAS  Google Scholar 

  • Brownstone RM, Wilson JM (2008) Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res Rev 57:64–76

    Article  PubMed  Google Scholar 

  • Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963

    Article  PubMed  CAS  Google Scholar 

  • Corna S, Grasso M, Nardone A, Schieppati M (1995) Selective depression of medium-latency leg and foot muscle responses to stretch by an alpha 2-agonist in humans. J Physiol 484:803–809

    PubMed  CAS  Google Scholar 

  • Cullheim S, Kellerth JO (1978) A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hind-limb muscles. J Physiol 281:285–299

    PubMed  CAS  Google Scholar 

  • Flynn JR, Graham BA, Galea MP, Callister RJ (2011) The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60:809–822

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Ekeberg O, El Manira A, Lansner A, Parker D, Tegner J, Wallen P (1998) Intrinsic function of a neuronal network – a vertebrate central pattern generator. Brain Res Rev 26:184–197

    Article  PubMed  CAS  Google Scholar 

  • Hagglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13:246–252

    Article  PubMed  Google Scholar 

  • Harris-Warrick RM, Johnson BR, Peck JH, Kloppenburg P, Ayali A, Skarbinski J (1998) Distributed effects of dopamine modulation in the crustacean pyloric network. Ann N Y Acad Sci 860:155–167

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka N, Mannen H, Hongo T, Sasaki S (1979) Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: three dimensional reconstructions from serial sections. J Comp Neurol 186:189–211

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Lindstrom S (1970) Morphological identification of physiologically defined neurones in the cat spinal cord. Brain Res 20:323–326

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Roberts W (1972) Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J Physiol 222:623–642

    PubMed  CAS  Google Scholar 

  • Jankowska E, Skoog B (1986) Labeling of midlumbar neurones projecting to cat hindlimb motoneurones by transneuronal transport of a horseradish peroxidase conjugate. Neurosci Lett 71:163–168

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Hammar I, Chojnicka B, Heden CH (2000) Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. Eur J Neurosci 12:701–714

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E (2008) Spinal interneuronal networks in the cat; elementary components. Brain Res Rev 57:46–55

    Article  PubMed  Google Scholar 

  • Jankowska E, Edgley SA (2010) Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update. Eur J Neurosci 32:881–893

    Article  PubMed  Google Scholar 

  • Kiehn O (2006) Locomotor circuits in the Mammalian spinal cord. Annu Rev Neurosci 29:279–306

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom S (1973) Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat. Acta Physiol Scand Suppl 392:1–43

    PubMed  CAS  Google Scholar 

  • Liu TT, Bannatyne BA, Jankowska E, Maxwell DJ (2010) Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. J Physiol 588:4217–4233

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1975) Control of spinal mechanisms from the brain. In: Tower DB (ed) The basic neurosciences, vol 1. Raven, New York, pp 253–265

    Google Scholar 

  • McCrea DA (1998) Neuronal basis of afferent-evoked enhancement of locomotor activity. Ann N Y Acad Sci 860:216–225

    Article  PubMed  CAS  Google Scholar 

  • Noga BR, Shefchyk SJ, Jamal J, Jordan LM (1987) The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp Brain Res 66:99–105

    Article  PubMed  CAS  Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    Article  PubMed  CAS  Google Scholar 

  • Roberts A, Soffe SR, Wolf ES, Yoshida M, Zhao FY (1998) Central circuits controlling locomotion in young frog tadpoles. Ann N Y Acad Sci 860:19–34

    Article  PubMed  CAS  Google Scholar 

  • Saueressig H, Burrill J, Goulding M (1999) Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126:4201–4212

    PubMed  CAS  Google Scholar 

  • Selverston A, Elson R, Rabinovich M, Huerta R, Abarbanel H (1998) Basic principles for generating motor output in the stomatogastric ganglion. Ann N Y Acad Sci 860:35–50

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven/London

    Google Scholar 

  • Stepien AE, Arber S (2008) Probing the locomotor conundrum: descending the ‘V’ interneuron ladder. Neuron 60:1–4

    Article  PubMed  CAS  Google Scholar 

  • Stepien AE, Tripodi M, Arber S (2010) Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:456–472

    Article  PubMed  CAS  Google Scholar 

  • Wenner P, O’Donovan MJ (1999) Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord. J Neurosci 19:7557–7567

    PubMed  CAS  Google Scholar 

  • Wilson JM, Blagovechtchenski E, Brownstone RM (2010) Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion. J Neurosci 30:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Al-Mosawie A, Wilson JM, Brownstone RM (2007) Heterogeneity of V2-derived interneurons in the adult mouse spinal cord. Eur J Neurosci 26:3003–3015

    Article  PubMed  CAS  Google Scholar 

  • Alstermark B, Isa T, Pettersson LG, Sasaki S (2007) The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol (Oxf) 189:123–140

    Article  CAS  Google Scholar 

  • Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology the nervous system motor control. American Physiological Society, Bethesda, pp 509–595

    Google Scholar 

  • Bannatyne BA, Liu TT, Hammar I, Stecina K, Jankowska E, Maxwell DJ (2009) Excitatory and inhibitory intermediate zone interneurons in pathways from feline group I and II afferents: differences in axonal projections and input. J Physiol 587:379–399

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36

    PubMed  Google Scholar 

  • Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128:263–277

    Article  PubMed  CAS  Google Scholar 

  • Fetcho JR, Higashijima S, McLean DL (2008) Zebrafish and motor control over the last decade. Brain Res Rev 57:86–93

    Article  PubMed  Google Scholar 

  • Fetz EE, Perlmutter SI, Prut Y, Seki K, Votaw S (2002) Roles of primate spinal interneurons in preparation and execution of voluntary hand movement. Brain Res Rev 40:53–65

    Article  PubMed  CAS  Google Scholar 

  • Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    Article  PubMed  CAS  Google Scholar 

  • Hultborn H (2006) Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog Neurobiol 78:215–232

    Article  PubMed  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533:31–40

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Hammar I (2002) Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Rev 40:19–28

    Article  PubMed  CAS  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (eds) (1991) Principles of neural sciences. Elsevier, New York

    Google Scholar 

  • Lundberg A (1982) Inhibitory control from the brain stem of transmission from primary afferents to motoneurones, primary afferent terminals and ascending pathways. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier Biomedical Press, Amsterdam, pp 179–225

    Google Scholar 

  • McCrea DA (1992) Can sense be made of spinal interneuron circuits? Behav Brain Res 15:633–643

    Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

The research work in author’s laboratory has been supported by grants from the Swedish Research Council (15393-01) and from the NINDS/NIH (R01 NS040863). Comments from Dr. Robert Burke are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elzbieta Jankowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Jankowska, E. (2013). Spinal Interneurons. In: Pfaff, D.W. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1997-6_34

Download citation

Publish with us

Policies and ethics