Skip to main content

Sequential Quadratic Programming Methods

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

In his 1963 PhD thesis, Wilson proposed the first sequential quadratic programming (SQP) method for the solution of constrained nonlinear optimization problems. In the intervening 48 years, SQP methods have evolved into a powerful and effective class of methods for a wide range of optimization problems. We review some of the most prominent developments in SQP methods since 1963 and discuss the relationship of SQP methods to other popular methods, including augmented Lagrangian methods and interior methods. Given the scope and utility of nonlinear optimization, it is not surprising that SQP methods are still a subject of active research. Recent developments in methods for mixed integer nonlinear programming (MINLP) and the minimization of functions subject to differential equation constraints has led to a heightened interest in methods that may be “warm started” from a good approximate solution. We discuss the role of SQP methods in these contexts

AMS(MOS) subject classifications. 49J20, 49J15, 49M37, 49D37, 65F05, 65K05, 90C30.

This material is based upon work supported by the National Science Foundation under Grant No. DMS-0915220, and the Department of Energy under grant DE-SC0002349.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41 (electronic).

    Google Scholar 

  2. M. Anitescu, On the rate of convergence of sequential quadratic programming with nondifferentiable exact penalty function in the presence of constraint degeneracy, Math. Program., 92 (2002), pp. 359–386.

    Article  MATH  MathSciNet  Google Scholar 

  3. , A superlinearly convergent sequential quadratically constrained quadratic programming algorithm for degenerate nonlinear programming, SIAM J. Op- tim., 12 (2002), pp. 949–978.

    Google Scholar 

  4. C. Ashcraft and R. Grimes, SPOOLES: an object-oriented sparse matrix library, in Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing 1999 (San Antonio, TX), Philadelphia, PA, 1999, SIAM, p. 10.

    Google Scholar 

  5. R.A. Bartlett and L.T. Biegler, QPSchur: a dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming, Optim. Eng., 7 (2006), pp. 5–32.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.P. Bertsekas, Constrained optimization and Lagrange multiplier methods, Athena Scientific, Belmont, Massachusetts, 1996.

    Google Scholar 

  7. M.C. Biggs, Constrained minimization using recursive equality quadratic programming, in Numerical Methods for Nonlinear Optimization, F.A. Lootsma, ed., Academic Press, London and New York, 1972, pp. 411–428.

    Google Scholar 

  8. J. Bisschop and A. Meeraus, Matrix augmentation and partitioning in the updating of the basis inverse, Math. Program., 13 (1977), pp. 241–254.

    Article  MATH  MathSciNet  Google Scholar 

  9. P.T. Boggs and J.W. Tolle, Sequential quadratic programming, in Acta Numerica, 1995, Vol. 4 of Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 1–51.

    Google Scholar 

  10. N.L. Boland, A dual-active-set algorithm for positive semi-definite quadratic programming, Math. Programming, 78 (1997), pp. 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.M. Borwein, Necessary and sufficient conditions for quadratic minimality, Numer. Funct. Anal. and Optimiz., 5 (1982), pp. 127–140.

    Article  MATH  Google Scholar 

  12. A.M. Bradley, Algorithms for the Equilibration of Matrices and Their Application to Limited-Memory Quasi-Newton Methods, PhD thesis, Institute for Computational and Mathematical Engineering, Stanford University, Stan- ford, CA, May 2010.

    Google Scholar 

  13. K.W. Brodlie, A.R. Gourlay, and J. Greenstadt, Rank-one and rank-two corrections to positive definite matrices expressed in product form, J. Inst. Math. Appl., 11 (1973), pp. 73–82.

    Article  MATH  MathSciNet  Google Scholar 

  14. C.G. Broyden, The convergence of a class of double rank minimization algorithms, I & II, J. Inst. Maths. Applns., 6 (1970), pp. 76–90 and 222–231.

    Google Scholar 

  15. A. Buckley and A. LeNir, QN-like variable storage conjugate gradients, Math.Program., 27 (1983), pp. 155–175.

    Article  MATH  MathSciNet  Google Scholar 

  16. , BBVSCG–a variable storage algorithm for function minimization, ACM Trans. Math. Software, 11 (1985), pp. 103–119.

    Google Scholar 

  17. J.R. Bunch, Partial pivoting strategies for symmetric matrices, SIAM J. Numer.Anal., 11 (1974), pp. 521–528.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comput., 31 (1977), pp. 163–179.

    Article  MATH  MathSciNet  Google Scholar 

  19. , A computational method for the indefinite quadratic programming problem, Linear Algebra Appl., 34 (1980), pp. 341–370.

    Google Scholar 

  20. J.R. Bunch and B.N. Parlett, Direct methods for solving symmetric indefinite systems of linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

    Article  MathSciNet  Google Scholar 

  21. J.V. Burke, A sequential quadratic programming method for potentially infeasible mathematical programs, J. Math. Anal. Appl., 139 (1989), pp. 319–351.

    Article  MATH  MathSciNet  Google Scholar 

  22. , A robust trust region method for constrained nonlinear programming problems, SIAM J. Optim., 2 (1992), pp. 324–347.

    Google Scholar 

  23. J.V. Burke and S.-P. Han, A robust sequential quadratic programming method, Math. Programming, 43 (1989), pp. 277–303.

    Article  MATH  MathSciNet  Google Scholar 

  24. R.H. Byrd, F.E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for nonlinear optimization, SIAM Journal on Optimization, 20 (2010), pp. 2281–2299.

    Article  MATH  MathSciNet  Google Scholar 

  25. R.H. Byrd, N.I.M. Gould, J. Nocedal, and R.A. Waltz, An algorithm for nonlinear optimization using linear programming and equality constrained subproblems, Math. Program., 100 (2004), pp. 27–48.

    MATH  MathSciNet  Google Scholar 

  26. , On the convergence of successive linear-quadratic programming algorithms, SIAM J. Optim., 16 (2005), pp. 471–489.

    Google Scholar 

  27. R.H. Byrd, J. Nocedal, and R.B. Schnabel, Representations of quasi-Newton matrices and their use in limited-memory methods, Math. Program., 63 (1994), pp. 129–156.

    Article  MATH  MathSciNet  Google Scholar 

  28. R.H. Byrd, J. Nocedal, and R.A. Waltz, Steering exact penalty methods for nonlinear programming, Optim. Methods Softw., 23 (2008), pp. 197–213.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.H. Byrd, R.A. Tapia, and Y. Zhang, An SQP augmented Lagrangian BFGS algorithm for constrained optimization, SIAM J. Optim., 20 (1992), pp. 210–241.

    Article  MathSciNet  Google Scholar 

  30. R.M. Chamberlain, M.J.D. Powell, C. Lemarechal, and H.C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization, Math. Programming Stud. (1982), pp. 1–17. Algorithms for constrained minimization of smooth nonlinear functions.

    Google Scholar 

  31. C.M. Chin, A New Trust Region based SLP Filter Algorithm which uses EQP Active Set Strategy, PhD thesis, Department of Mathematics, University of Dundee, Scotland, 2001.

    Google Scholar 

  32. C.M. Chin and R. Fletcher, On the global convergence of an SLP-filter algorithm that takes EQP steps, Math. Program., 96 (2003), pp. 161–177.

    Article  MATH  MathSciNet  Google Scholar 

  33. C.M. Chin, A.H.A. Rashid, and K.M. Nor, A combined filter line search and trust region method for nonlinear programming, WSEAS Trans. Math., 5 (2006), pp. 656–662.

    MathSciNet  Google Scholar 

  34. J.W. Chinneck, Analyzing infeasible nonlinear programs, Comput. Optim. Appl., 4 (1995), pp. 167–179.

    Article  MATH  MathSciNet  Google Scholar 

  35. , Feasibility and infeasibility in optimization: algorithms and computational methods, International Series in Operations Research & Management Science, 118, Springer, New York, 2008.

    Google Scholar 

  36. T.F. Coleman and A.R. Conn, On the local convergence of a quasi-Newton method for the nonlinear programming problem, SIAM J. Numer. Anal., 21 (1984), pp. 775–769.

    Article  MathSciNet  Google Scholar 

  37. T.F. Coleman and A. Pothen, The null space problem I. Complexity, SIAM J. on Algebraic and Discrete Methods, 7 (1986), pp. 527–537.

    Google Scholar 

  38. T.F. Coleman and D.C. Sorensen, A note on the computation of an orthogonal basis for the null space of a matrix, Math. Program., 29 (1984), pp. 234–242.

    Article  MATH  MathSciNet  Google Scholar 

  39. A.R. Conn, N.I.M. Gould, and Ph. L. Toint, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988), pp. 433–460.

    Article  MATH  MathSciNet  Google Scholar 

  40. , A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal., 28 (1991), pp. 545–572.

    Google Scholar 

  41. , LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A), Lecture Notes in Computation Mathematics 17, Springer Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.

    Google Scholar 

  42. , Trust-Region Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

    Google Scholar 

  43. L.B. Contesse, Une caract´erisation compl`ete des minima locaux en programmation quadratique, Numer. Math., 34 (1980), pp. 315–332.

    Article  MATH  MathSciNet  Google Scholar 

  44. R.W. Cottle, G.J. Habetler, and C.E. Lemke, On classes of copositive matrices, Linear Algebra Appl., 3 (1970), pp. 295–310.

    Article  MATH  MathSciNet  Google Scholar 

  45. Y.-H. Dai and K. Schittkowski, A sequential quadratic programming algorithm with non-monotone line search, Pac. J. Optim., 4 (2008), pp. 335–351.

    MATH  MathSciNet  Google Scholar 

  46. F. Delbos and J.C. Gilbert, Global linear convergence of an augmented Lagrangian algorithm to solve convex quadratic optimization problems, J. Convex Anal., 12 (2005), pp. 45–69.

    MATH  MathSciNet  Google Scholar 

  47. R.S. Dembo and U. Tulowitzki, Sequential truncated quadratic programming methods, in Numerical optimization, 1984 (Boulder, Colo., 1984), SIAM, Philadelphia, PA, 1985, pp. 83–101.

    Google Scholar 

  48. J.E. Dennis, Jr. and R.B. Schnabel, A new derivation of symmetric positive definite secant updates, in Nonlinear Programming, 4 (Proc. Sympos., Special Interest Group on Math. Programming, Univ. Wisconsin, Madison, Wis., 1980), Academic Press, New York, 1981, pp. 167–199.

    Google Scholar 

  49. G. DiPillo and L. Grippo, A new class of augmented Lagrangians in nonlinear programming, SIAM J. Control Optim., 17 (1979), pp. 618–628.

    Article  MathSciNet  Google Scholar 

  50. W.S. Dorn, Duality in quadratic programming, Quart. Appl. Math., 18 (1960/1961), pp. 155–162.

    Google Scholar 

  51. Z. Dost´al, A. Friedlander, and S. A. Santos, Adaptive precision control in quadratic programming with simple bounds and/or equalities, in High per- formance algorithms and software in nonlinear optimization (Ischia, 1997), Vol. 24 of Appl. Optim., Kluwer Acad. Publ., Dordrecht, 1998, pp. 161–173.

    Google Scholar 

  52. , Augmented Lagrangians with adaptive precision control for quadratic programming with equality constraints, Comput. Optim. Appl., 14 (1999), pp. 37–53.

    Google Scholar 

  53. , Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints, SIAM J. Optim., 13 (2003), pp. 1120–1140 (electronic).

    Google Scholar 

  54. I.S. Duff, MA57—a code for the solution of sparse symmetric definite and in- definite systems, ACM Trans. Math. Software, 30 (2004), pp. 118–144.

    Article  MATH  MathSciNet  Google Scholar 

  55. I.S. Duff and J.K. Reid, MA27: a set of Fortran subroutines for solving sparse symmetric sets of linear equations, Tech. Rep. R-10533, Computer Science and Systems Division, AERE Harwell, Oxford, England, 1982.

    Google Scholar 

  56. S.K. Eldersveld and M.A. Saunders, A block-LU update for large-scale linear programming, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 191–201.

    Article  MATH  MathSciNet  Google Scholar 

  57. O. Exler and K. Schittkowski, A trust region SQP algorithm for mixed-integer nonlinear programming, Optim. Lett., 1 (2007), pp. 269–280.

    Article  MATH  MathSciNet  Google Scholar 

  58. A. Fischer, Modified Wilson’s method for nonlinear programs with nonunique multipliers, Math. Oper. Res., 24 (1999), pp. 699–727.

    Article  MATH  MathSciNet  Google Scholar 

  59. R. Fletcher, A new approach to variable metric algorithms, Computer Journal, 13 (1970), pp. 317–322.

    Article  MATH  Google Scholar 

  60. , A general quadratic programming algorithm, J. Inst. Math. Applics., 7 (1971), pp. 76–91.

    Google Scholar 

  61. , A model algorithm for composite nondifferentiable optimization problems, Math. Programming Stud. (1982), pp. 67–76. Nondifferential and variational techniques in optimization (Lexington, Ky., 1980).

    Google Scholar 

  62. , Second order corrections for nondifferentiable optimization, in Numerical analysis (Dundee, 1981), Vol. 912 of Lecture Notes in Math., Springer, Berlin, 1982, pp. 85–114.

    Google Scholar 

  63. , An ℓ1 penalty method for nonlinear constraints, in Numerical Optimization 1984, P.T. Boggs, R.H. Byrd, and R.B. Schnabel, eds., Philadelphia, 1985, pp. 26–40.

    Google Scholar 

  64. , Practical methods of optimization, Wiley-Interscience [John Wiley & Sons], New York, 2001.

    Google Scholar 

  65. R. Fletcher, N.I.M. Gould, S. Leyffer, Ph. L. Toint, and A. W¨achter, Global convergence of a trust-region SQP-filter algorithm for general non-linear programming, SIAM J. Optim., 13 (2002), pp. 635–659 (electronic) (2003).

    Google Scholar 

  66. R. Fletcher and S. Leyffer, User manual for filterSQP, Tech. Rep. NA/181, Dept. of Mathematics, University of Dundee, Scotland, 1998.

    Google Scholar 

  67. , Nonlinear programming without a penalty function, Math. Program., 91 (2002), pp. 239–269.

    Google Scholar 

  68. R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13 (2002), pp. 44–59 (electronic).

    Google Scholar 

  69. R. Fletcher and E. Sainz de la Maza, Nonlinear programming and nonsmooth optimization by successive linear programming, Math. Program., 43 (1989), pp. 235–256.

    Article  MATH  MathSciNet  Google Scholar 

  70. A. Forsgren, Inertia-controlling factorizations for optimization algorithms, Appl. Num. Math., 43 (2002), pp. 91–107.

    Article  MATH  MathSciNet  Google Scholar 

  71. A. Forsgren and P.E. Gill, Primal-dual interior methods for nonconvex non- linear programming, SIAM J. Optim., 8 (1998), pp. 1132–1152.

    Article  MATH  MathSciNet  Google Scholar 

  72. A. Forsgren, P.E. Gill, and W. Murray, On the identification of local min-imizers in inertia-controlling methods for quadratic programming, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 730–746.

    Article  MATH  MathSciNet  Google Scholar 

  73. M.P. Friedlander, A Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization, PhD thesis, Department of Operations Research, Stanford University, Stanford, CA, 2002.

    Google Scholar 

  74. M.P. Friedlander and S. Leyffer, Global and finite termination of a two- phase augmented Lagrangian filter method for general quadratic programs, SIAM J. Sci. Comput., 30 (2008), pp. 1706–1729.

    Article  MATH  MathSciNet  Google Scholar 

  75. M.P. Friedlander and M.A. Saunders, A globally convergent linearly con-strained Lagrangian method for nonlinear optimization, SIAM J. Optim., 15 (2005), pp. 863–897.

    Article  MATH  MathSciNet  Google Scholar 

  76. M.P. Friedlander and P. Tseng, Exact regularization of convex programs, SIAM J. Optim., 18 (2007), pp. 1326–1350.

    Article  MATH  MathSciNet  Google Scholar 

  77. J.C. Gilbert and C. Lemar´echal, Some numerical experiments with variable- storage quasi-Newton algorithms, Math. Program. (1989), pp. 407–435.

    Google Scholar 

  78. J.R. Gilbert and M.T. Heath, Computing a sparse basis for the null space, Re-port TR86-730, Department of Computer Science, Cornell University, 1986.

    Google Scholar 

  79. P.E. Gill, N.I.M. Gould, W. Murray, M.A. Saunders, and M.H. Wright, A weighted gram-schmidt method for convex quadratic programming, Math. Program., 30 (1984), pp. 176–195.

    Article  MATH  MathSciNet  Google Scholar 

  80. P.E. Gill and M.W. Leonard, Limited-memory reduced-Hessian methods for large-scale unconstrained optimization, SIAM J. Optim., 14 (2003), pp. 380–401.

    Article  MATH  MathSciNet  Google Scholar 

  81. P.E. Gill and W. Murray, Newton-type methods for unconstrained and linearly constrained optimization, Math. Program., 7 (1974), pp. 311–350.

    Article  MATH  MathSciNet  Google Scholar 

  82. , Numerically stable methods for quadratic programming, Math. Program., 14 (1978), pp. 349–372.

    Google Scholar 

  83. P.E. Gill, W. Murray, and M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

    Article  MATH  MathSciNet  Google Scholar 

  84. , User’s guide for SNOPT Version 7: Software for large-scale nonlinear programming, Numerical Analysis Report 06–2, Department of Mathematics, University of California, San Diego, La Jolla, CA, 2006.

    Google Scholar 

  85. P.E. Gill, W. Murray, M.A. Saunders, G.W. Stewart, and M.H. Wright, Properties of a representation of a basis for the null space, Math. Programming, 33 (1985), pp. 172–186.

    Article  MATH  MathSciNet  Google Scholar 

  86. P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, A note on a sufficient-decrease criterion for a nonderivative step-length procedure, Math. Programming, 23 (1982), pp. 349–352.

    Article  MATH  MathSciNet  Google Scholar 

  87. , Procedures for optimization problems with a mixture of bounds and general linear constraints, ACM Trans. Math. Software, 10 (1984), pp. 282–298.

    Google Scholar 

  88. , Sparse matrix methods in optimization, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 562–589.

    Google Scholar 

  89. , Maintaining LU factors of a general sparse matrix, Linear Algebra Appl., 88/89 (1987), pp. 239–270.

    Google Scholar 

  90. , A Schur-complement method for sparse quadratic programming, Report SOL 87–12, Department of Operations Research, Stanford University, Stan- ford, CA, 1987.

    Google Scholar 

  91. , A Schur-complement method for sparse quadratic programming, in Reliable Numerical Computation, M.G. Cox and S.J. Hammarling, eds., Oxford University Press, 1990, pp. 113–138.

    Google Scholar 

  92. , Inertia-controlling methods for general quadratic programming, SIAM Rev., 33 (1991), pp. 1–36.

    Google Scholar 

  93. , Some theoretical properties of an augmented Lagrangian merit function, in Advances in Optimization and Parallel Computing, P.M. Pardalos, ed.,North Holland, North Holland, 1992, pp. 101–128.

    Google Scholar 

  94. P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London and New York, 1981.

    MATH  Google Scholar 

  95. P.E. Gill and D.P. Robinson, A primal-dual augmented Lagrangian, Computational Optimization and Applications (2010), pp. 1–25. http://dx.doi.org/ 10.1007/s10589-010-9339-1.

  96. P.E. Gill and E. Wong, Methods for convex and general quadratic programming, Numerical Analysis Report 11–1, Department of Mathematics, University of California, San Diego, La Jolla, CA, 2011.

    Google Scholar 

  97. , A regularized method for convex and general quadratic programming, Numerical Analysis Report 10–2, Department of Mathematics, University of California, San Diego, La Jolla, CA, 2010.

    Google Scholar 

  98. D. Goldfarb, A family of variable metric methods derived by variational means, Math. Comp., 24 (1970), pp. 23–26.

    Article  MATH  MathSciNet  Google Scholar 

  99. , Curvilinear path steplength algorithms for minimization which use directions of negative curvature, Math. Program., 18 (1980), pp. 31–40.

    Google Scholar 

  100. D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex quadratic programs, Math. Programming, 27 (1983), pp. 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  101. N.I.M. Gould, On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem, Math. Program., 32 (1985), pp. 90–99.

    Article  MATH  Google Scholar 

  102. , On the accurate determination of search directions for simple differentiable penalty functions, IMA J. Numer. Anal., 6 (1986), pp. 357–372.

    Google Scholar 

  103. , An algorithm for large-scale quadratic programming, IMA J. Numer Anal., 11 (1991), pp. 299–324.

    Google Scholar 

  104. N.I.M. Gould, D. Orban, and Ph.L. Toint, GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2003), pp. 353–372.

    Article  MATH  MathSciNet  Google Scholar 

  105. N.I.M. Gould and D.P. Robinson, A second derivative SQP method with imposed descent, Numerical Analysis Report 08/09, Computational Laboratory, University of Oxford, Oxford, UK, 2008.

    Google Scholar 

  106. , A second derivative SQP method: Global convergence, SIAM J. Optim.,20 (2010), pp. 2023–2048.

    Google Scholar 

  107. , A second derivative SQP method: Local convergence and practical issues, SIAM J. Optim., 20 (2010), pp. 2049–2079.

    Google Scholar 

  108. N.I.M. Gould, J.A. Scott, and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Trans. Math. Software, 33 (2007), pp. Art. 10, 32.

    Google Scholar 

  109. N.I.M. Gould and Ph.L. Toint, An iterative working-set method for large-scale nonconvex quadratic programming, Appl. Numer. Math., 43 (2002), pp. 109– 128. 19th Dundee Biennial Conference on Numerical Analysis (2001).

    Google Scholar 

  110. , Numerical methods for large-scale non-convex quadratic programming, in Trends in industrial and applied mathematics (Amritsar, 2001), Vol. 72 of Appl. Optim., Kluwer Acad. Publ., Dordrecht, 2002, pp. 149–179.

    Google Scholar 

  111. J.-P. Goux and S. Leyffer, Solving large MINLPs on computational grids, Optim. Eng., 3 (2002), pp. 327–346. Special issue on mixed-integer programming and its applications to engineering.

    Google Scholar 

  112. J. Greenstadt, On the relative efficiencies of gradient methods, Math. Comp., 21 (1967), pp. 360–367.

    Article  MATH  MathSciNet  Google Scholar 

  113. L. Grippo, F. Lampariello, and S. Lucidi, Newton-type algorithms with non-monotone line search for large-scale unconstrained optimization, in System modelling and optimization (Tokyo, 1987), Vol. 113 of Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1988, pp. 187–196.

    Google Scholar 

  114. , A truncated Newton method with nonmonotone line search for unconstrained optimization, J. Optim. Theory Appl., 60 (1989), pp. 401–419.

    Google Scholar 

  115. , A class of nonmonotone stabilization methods in unconstrained optimization, Numer. Math., 59 (1991), pp. 779–805.

    Google Scholar 

  116. N.-Z. Gu and J.-T. Mo, Incorporating nonmonotone strategies into the trust region method for unconstrained optimization, Comput. Math. Appl., 55 (2008), pp. 2158–2172.

    Article  MATH  MathSciNet  Google Scholar 

  117. W.W. Hager, Stabilized sequential quadratic programming, Comput. Optim. Appl., 12 (1999), pp. 253–273. Computational optimization—a tribute to Olvi Mangasarian, Part I.

    Google Scholar 

  118. S.P. Han, Superlinearly convergent variable metric algorithms for general nonlinear programming problems, Math. Programming, 11 (1976/77), pp. 263–282.

    Google Scholar 

  119. , A globally convergent method for nonlinear programming, J. Optim. The-ory Appl., 22 (1977), pp. 297–309.

    Google Scholar 

  120. S.P. Han and O.L. Mangasarian, Exact penalty functions in nonlinear programming, Math. Programming, 17 (1979), pp. 251–269.

    Article  MATH  MathSciNet  Google Scholar 

  121. J. Herskovits, A two-stage feasible directions algorithm for nonlinear constrained optimization, Math. Programming, 36 (1986), pp. 19–38.

    Article  MATH  MathSciNet  Google Scholar 

  122. M.R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–320.

    Article  MATH  MathSciNet  Google Scholar 

  123. H.M. Huynh, A Large-Scale Quadratic Programming Solver Based on Block-LU Updates of the KKT System, PhD thesis, Program in Scientific Computing and Computational Mathematics, Stanford University, Stanford, CA, 2008.

    Google Scholar 

  124. M.M. Kostreva and X. Chen, A superlinearly convergent method of feasible directions, Appl. Math. Comput., 116 (2000), pp. 231–244.

    Article  MATH  MathSciNet  Google Scholar 

  125. , Asymptotic rates of convergence of SQP-type methods of feasible directions, in Optimization methods and applications, Vol. 52 of Appl. Optim., Kluwer Acad. Publ., Dordrecht, 2001, pp. 247–265.

    Google Scholar 

  126. J. Kroyan, Trust-Search Algorithms for Unconstrained Optimization, PhD the-sis, Department of Mathematics, University of California, San Diego, February 2004.

    Google Scholar 

  127. C.T. Lawrence and A.L. Tits, A computationally efficient feasible sequential quadratic programming algorithm, SIAM J. Optim., 11 (2001), pp. 1092–1118 (electronic).

    Google Scholar 

  128. S. Leyffer, Integrating SQP and branch-and-bound for mixed integer nonlinear programming, Comput. Optim. Appl., 18 (2001), pp. 295–309.

    Article  MATH  MathSciNet  Google Scholar 

  129. D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), pp. 503–528.

    Article  MATH  MathSciNet  Google Scholar 

  130. X.-W. Liu and Y.-X. Yuan, A robust algorithm for optimization with general equality and inequality constraints, SIAM J. Sci. Comput., 22 (2000), pp. 517–534 (electronic).

    Google Scholar 

  131. C.M. Maes, A Regularized Active-Set Method for Sparse Convex Quadratic Programming, PhD thesis, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, August 2010.

    Google Scholar 

  132. A. Majthay, Optimality conditions for quadratic programming, Math. Programming, 1 (1971), pp. 359–365.

    Article  MATH  MathSciNet  Google Scholar 

  133. O.L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math.Anal. Appl., 17 (1967), pp. 37–47.

    Article  MATH  MathSciNet  Google Scholar 

  134. N. Maratos, Exact Penalty Function Algorithms for Finite-Dimensional and Control Optimization Problems, PhD thesis, Department of Computing and Control, University of London, 1978.

    Google Scholar 

  135. J. Mo, K. Zhang, and Z. Wei, A variant of SQP method for inequality constrained optimization and its global convergence, J. Comput. Appl. Math., 197 (2006), pp. 270–281.

    Article  MATH  MathSciNet  Google Scholar 

  136. J.L. Morales, A numerical study of limited memory BFGS methods, Appl. Math. Lett., 15 (2002), pp. 481–487.

    Article  MATH  MathSciNet  Google Scholar 

  137. J.L. Morales, J. Nocedal, and Y. Wu, A sequential quadratic programming algorithm with an additional equality constrained phase, Tech. Rep. OTC-05, Northwestern University, 2008.

    Google Scholar 

  138. J.J. Mor´e and D.C. Sorensen, On the use of directions of negative curvature in a modified Newton method, Math. Program., 16 (1979), pp. 1–20.

    Google Scholar 

  139. , Newton’s method, in Studies in Mathematics, Volume 24. MAA Studies in Numerical Analysis, G.H. Golub, ed., Math. Assoc. America, Washington, DC, 1984, pp. 29–82.

    Google Scholar 

  140. J.J. Mor´e and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Software, 20 (1994), pp. 286–307.

    Google Scholar 

  141. W. Murray, An algorithm for constrained minimization, in Optimization (Sympos., Univ. Keele, Keele, 1968), Academic Press, London, 1969, pp. 247–258.

    Google Scholar 

  142. W. Murray and F.J. Prieto, A sequential quadratic programming algorithm using an incomplete solution of the subproblem, SIAM J. Optim., 5 (1995), pp. 590–640.

    Article  MATH  MathSciNet  Google Scholar 

  143. J. Nocedal and S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

    Book  MATH  Google Scholar 

  144. A. Olivares, J.M. Moguerza, and F.J. Prieto, Nonconvex optimization using negative curvature within a modified linesearch, European J. Oper. Res., 189 (2008), pp. 706–722.

    Article  MATH  MathSciNet  Google Scholar 

  145. J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970.

    MATH  Google Scholar 

  146. , Iterative solution of nonlinear equations in several variables, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1970 original.

    Google Scholar 

  147. E.R. Panier and A.L. Tits, A superlinearly convergent feasible method for the solution of inequality constrained optimization problems, SIAM J. Control Optim., 25 (1987), pp. 934–950.

    Article  MATH  MathSciNet  Google Scholar 

  148. , On combining feasibility, descent and superlinear convergence in inequality constrained optimization, Math. Programming, 59 (1993), pp. 261–276.

    Google Scholar 

  149. P.M. Pardalos and G. Schnitger, Checking local optimality in constrained quadratic programming is NP-hard, Oper. Res. Lett., 7 (1988), pp. 33–35.

    Article  MATH  MathSciNet  Google Scholar 

  150. P.M. Pardalos and S.A. Vavasis, Quadratic programming with one negative eigenvalue is NP-hard, J. Global Optim., 1 (1991), pp. 15–22.

    Article  MATH  MathSciNet  Google Scholar 

  151. M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., London and New York, 1969, Academic Press, pp. 283–298.

    Google Scholar 

  152. , The convergence of variable metric methods for nonlinearly constrained optimization calculations, in Nonlinear Programming, 3 (Proc. Sympos., Spe- cial Interest Group Math. Programming, Univ. Wisconsin, Madison, Wis., 1977), Academic Press, New York, 1978, pp. 27–63.

    Google Scholar 

  153. , A fast algorithm for nonlinearly constrained optimization calculations, in Numerical Analysis, Dundee 1977, G.A. Watson, ed., no. 630 in Lecture Notes in Mathematics, Heidelberg, Berlin, New York, 1978, Springer Verlag, pp. 144–157.

    Google Scholar 

  154. , On the quadratic programming algorithm of Goldfarb and Idnani, Math. Programming Stud., (1985), pp. 46–61.

    Google Scholar 

  155. D.P. Robinson, Primal-Dual Methods for Nonlinear Optimization, PhD thesis, Department of Mathematics, University of California, San Diego, September 2007.

    Google Scholar 

  156. S.M. Robinson, A quadratically-convergent algorithm for general nonlinear programming problems, Math. Program., 3 (1972), pp. 145–156.

    Article  MATH  Google Scholar 

  157. , Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear programming algorithms, Math. Program., 7 (1974), pp. 1–16.

    Google Scholar 

  158. R.T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control Optim., 12 (1974), pp. 268–285.

    Article  MATH  MathSciNet  Google Scholar 

  159. O. Schenk and K. G¨artner, Solving unsymmetric sparse systems of linear equations with PARDISO, in Computational science—ICCS 2002, Part II (Amsterdam), Vol. 2330 of Lecture Notes in Comput. Sci., Springer, Berlin, 2002, pp. 355–363.

    Google Scholar 

  160. K. Schittkowski, The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. I. Conver- gence analysis, Numer. Math., 38 (1981/82), pp. 83–114.

    Google Scholar 

  161. , The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. II. An efficient implemen- tation with linear least squares subproblems, Numer. Math., 38 (1981/82), pp. 115–127.

    Google Scholar 

  162. , On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function, Math. Operationsforsch. Statist. Ser. Optim., 14 (1983), pp. 197–216.

    Google Scholar 

  163. R.B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. and Statist. Comput., 11 (1990), pp. 1136–1158.

    Article  MATH  MathSciNet  Google Scholar 

  164. D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp., 24 (1970), pp. 647–656.

    Article  MathSciNet  Google Scholar 

  165. R.A. Tapia, A stable approach to Newton’s method for general mathematical programming problems in Rn, J. Optim. Theory Appl., 14 (1974), pp. 453– 476.

    Article  MATH  MathSciNet  Google Scholar 

  166. , Diagonalized multiplier methods and quasi-Newton methods for constrained optimization, J. Optim. Theory Appl., 22 (1977), pp. 135–194.

    Google Scholar 

  167. Ph. L. Toint, An assessment of nonmonotone linesearch techniques for unconstrained optimization, SIAM J. Sci. Comput., 17 (1996), pp. 725–739.

    Article  MATH  MathSciNet  Google Scholar 

  168. S. Ulbrich, On the superlinear local convergence of a filter-SQP method, Math.Program., 100 (2004), pp. 217–245.

    MATH  MathSciNet  Google Scholar 

  169. G. Van der Hoek, Asymptotic properties of reduction methods applying lin early equality constrained reduced problems, Math. Program., 16 (1982), pp. 162–189.

    Article  MATH  Google Scholar 

  170. A. W¨achter and L.T. Biegler, Line search filter methods for nonlinear programming: local convergence, SIAM J. Optim., 16 (2005), pp. 32–48 (electronic).

    Google Scholar 

  171. , Line search filter methods for nonlinear programming: motivation and global convergence, SIAM J. Optim., 16 (2005), pp. 1–31 (electronic).

    Google Scholar 

  172. R.B. Wilson, A Simplicial Method for Convex Programming, PhD thesis, Harvard University, 1963.

    Google Scholar 

  173. S.J.Wright, Superlinear convergence of a stabilized SQP method to a degenerate solution, Comput. Optim. Appl., 11 (1998), pp. 253–275.

    Article  MATH  MathSciNet  Google Scholar 

  174. , Modifying SQP for degenerate problems, SIAM J. Optim., 13 (2002), pp. 470–497.

    Google Scholar 

  175. , An algorithm for degenerate nonlinear programming with rapid local convergence, SIAM J. Optim., 15 (2005), pp. 673–696.

    Google Scholar 

  176. Y.-X. Yuan, Conditions for convergence of trust region algorithms for nonsmooth optimization, Math. Programming, 31 (1985), pp. 220–228.

    Article  MATH  MathSciNet  Google Scholar 

  177. , On the superlinear convergence of a trust region algorithm for nonsmooth optimization, Math. Programming, 31 (1985), pp. 269–285.

    Google Scholar 

  178. , On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), pp. 515–539.

    Google Scholar 

  179. W.I. Zangwill, Non-linear programming via penalty functions, Management Sci., 13 (1967), pp. 344–358.

    Article  MathSciNet  Google Scholar 

  180. H. Zhang andW.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim., 14 (2004), pp. 1043–1056 (electronic).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip E. Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gill, P.E., Wong, E. (2012). Sequential Quadratic Programming Methods. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_6

Download citation

Publish with us

Policies and ethics