Skip to main content

Matrix Relaxations in Combinatorial Optimization

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

The success of interior-point methods to solve semidefinite optimization problems (SDP) has spurred interest in SDP as a modeling tool in various mathematical fields, in particular in combinatorial optimization. SDP can be viewed as a matrix relaxation of the underlying 0-1 optimization problem. In this survey, some of the main techniques to get matrix relaxations of combinatorial optimization problems are presented. These are based either on semidefinite matrices, leading in general to tractable relaxations, or on completely positive or copositive matrices. Copositive programs are intractable, but they can be used to get exact formulations of many NP-hard combinatorial optimization problems. It is the purpose of this survey to show the potential of matrix relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Armbruster, M. F¨ugenschuh, C. Helmberg, and A. Martin. A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. In Integer programming and combinatorial Optimization (IPCO 2008), pages 112–124, 2008.

    Google Scholar 

  2. S. Arora, E. Chlamtac, and M. Charikar. New approximation guarantee for chromatic number. In Proceedings of the 38th STOC, Seattle, USA, pages 215–224, 2006.

    Google Scholar 

  3. E. Behrends. Introduction to Markov chains with special emphasis on rapid mixing. Vieweg Advanced Lectures in Mathematics, 2000.

    Google Scholar 

  4. A. Berman and N. Shaked-Monderer. Completely positive matrices. World Scientific Publishing, 2003.

    Google Scholar 

  5. D.P. Bertsekas. Constrained optimization and Lagrange multipliers. Academic Press, 1982.

    Google Scholar 

  6. A. Blum and D. Karger. An ˜O(n3/14)-coloring algorithm for 3-colorable graphs. Information processing letters, 61(1):249–53, 1997.

    Article  MathSciNet  Google Scholar 

  7. A. Blum, G. Konjevod, R. Ravi, and S. Vempala. Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. Theoretical Computer Science, 235(1):25–42, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. I.M. Bomze, M. D¨ur, E. de Klerk, C. Roos, A.J. Quist, and T. Terlaky. On copositive programming and standard quadratic optimization problems. Journal of Global Optimization, 18(4):301–320, 2000.

    Google Scholar 

  9. S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph. SIAM Review, 46(4):667–689, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming (A), 120:479–495, 2009.

    Google Scholar 

  11. S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming (B), 95:329–357, 2003.

    Google Scholar 

  12. R.E. Burkard, M. Dell’Amico, and S. Martello. Assignment problems. SIAM, 2009.

    Google Scholar 

  13. E. Chlamtac. Non-local Analysis of SDP based approximation algorithms. PhD thesis, Princeton University, USA, 2009.

    Google Scholar 

  14. E. de Klerk. Aspects of semidefinite programming: interior point algorithms and selected applications. Kluwer Academic Publishers, 2002.

    Google Scholar 

  15. E. de Klerk and D.V. Pasechnik. Approximation of the stability number of a graph via copositive programming. SIAM Journal on Optimization, 12:875–892, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. de Klerk, D.V. Pasechnik, and J.P. Warners. On approximate graph colouring and Max-k-Cut algorithms based on the #-function. Journal of Combinatorial Optimization, 8(3):267–294, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.J. Duffin. Infinite programs. Ann. Math. Stud., 38:157–170, 1956.

    MATH  MathSciNet  Google Scholar 

  18. I. Dukanovic and F. Rendl. Copositive programming motivated bounds on the stability and chromatic numbers. Mathematical Programming, 121:249–268, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Frieze and M. Jerrum. Improved approximation algorithms for Max k-Cut and Max Bisection. Algorithmica, 18(1):67–81, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidefinite programming via matrix completion. I: General framework. SIAM Journal on Optimization, 11(3):647–674, 2000.

    MATH  MathSciNet  Google Scholar 

  21. B. Ghaddar, M. Anjos, and F. Liers. A branch-and-cut algorithm based on semdefinite programming for the minimum k-partition problem. Annals of Operations Research, 2008.

    Google Scholar 

  22. M.X. Goemans. Semidefinite programming in combinatorial optimization. Mathematical Programming, 79:143–162, 1997.

    MATH  MathSciNet  Google Scholar 

  23. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Golub and C.F. Van Loan. Matrix computations. 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press., 1996.

    Google Scholar 

  25. M. Gr¨otschel, L. Lov´asz, and A. Schrijver. Geometric algorithms and combinatorial optimization. Springer, Berlin, 1988.

    Google Scholar 

  26. N. Gvozdenovi´c. Approximating the stability number and the chromatic number of a graph via semidefinite programming. PhD thesis, University of Amsterdam, 2008.

    Google Scholar 

  27. N. Gvozdenovi´c and M. Laurent. Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization. SIAM Journal on Optimization, 19(2):592–615, 2008.

    Google Scholar 

  28. N. Gvozdenovi´c and M. Laurent. The operator for the chromatic number of a graph. SIAM Journal on Optimization, 19(2):572–591, 2008.

    Google Scholar 

  29. C. Helmberg. Semidefinite programming. European Journal of Operational Research, 137:461–482, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  30. C. Helmberg. Numerical validation of SBmethod. Mathematical Programming, 95:381–406, 2003.

    MATH  MathSciNet  Google Scholar 

  31. C. Helmberg, B. Mohar, S. Poljak, and F. Rendl. A spectral approach to bandwidth and separator problems in graphs. Linear and Multilinear Algebra, 39:73–90, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  32. C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10:673–696, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  33. J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM Review, 52(4):593–629, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  34. F. Jarre and F. Rendl. An augmented primal-dual method for linear conic problems. SIAM Journal on Optimization, 20:808–823, 2008.

    Article  MathSciNet  Google Scholar 

  35. D. Karger, R. Motwani, and M. Sudan. Approximate graph colouring by semidefinite programming. Journal of the ACM, 45:246–265, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  36. S.E. Karisch and F. Rendl. Semidefinite Programming and Graph Equipartition. Fields Institute Communications, 18:77–95, 1998.

    MathSciNet  Google Scholar 

  37. S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. Combinatorica, 20:393–415, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Kocvara and M. Stingl. On the solution of large-scale SDP problems by the modified barrier method using iterative solvers. Mathematical Programming, 95:413–444, 2007.

    Article  MathSciNet  Google Scholar 

  39. M. Laurent and F. Rendl. Semidefinite programming and integer programming. In K. Aardal, G.L. Nemhauser, and R. Weismantel, editors, Discrete Optimization, pages 393–514. Elsevier, 2005.

    Google Scholar 

  40. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.). The traveling salesman problem, a guided tour of combinatorial optimization. Wiley, Chicester, 1985.

    MATH  Google Scholar 

  41. A. Lisser and F. Rendl. Graph partitioning using Linear and Semidefinite Programming. Mathematical Programming (B), 95:91–101, 2002.

    Google Scholar 

  42. L. Lov´asz. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25:1–7, 1979.

    Google Scholar 

  43. L. Lov´asz. Semidefinite programs and combinatorial optimization. In B. A. Reed and C.L. Sales, editors, Recent advances in algorithms and combinatorics, pages 137–194. CMS books in Mathematics, Springer, 2003.

    Google Scholar 

  44. L. Lov´asz and A. Schrijver. Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on Optimization, 1:166–190, 1991.

    Google Scholar 

  45. D. Johnson M. Garey, R. Graham and D.E. Knuth. Complexity results for bandwidth minization. SIAM Journal on Applied Mathematics, 34:477–495, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  46. J. Malick, J. Povh, F. Rendl, and A. Wiegele. Regularization methods for semidefinite programming. SIAM Journal on Optimization, 20:336–356, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  47. R.J. McEliece, E.R. Rodemich, and H.C. Rumsey Jr. The Lov´asz bound and some generalizations. Journal of Combinatorics and System Sciences, 3:134–152, 1978.

    MATH  MathSciNet  Google Scholar 

  48. T.S. Motzkin and E.G. Straus. Maxima for graphs and a new proof of a theorem of Tur´an. Canadian Journal of Mathematics, 17:533–540, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  49. K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39:117–129, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  50. K. Nakata, K. Fujisawa, M. Fukuda, K. Kojima, and K. Murota. Exploiting sparsity in semidefinite programming via matrix completion. II: Implementation and numerical results. Mathematical Programming, 95:303–327, 2003.

    MATH  MathSciNet  Google Scholar 

  51. Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report, CORE, 1997.

    Google Scholar 

  52. C.H. Papadimitriou. The NP-completeness of the bandwidth minimization problem. Computing, 16:263–270, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  53. J. Povh. Applications of semidefinite and copositive programming in combinatorial optimization. PhD thesis, Universtity of Ljubljana, Slovenia, 2006.

    Google Scholar 

  54. J. Povh and F. Rendl. A copositive programming approach to graph partitioning. SIAM Journal on Optimization, 18(1):223–241, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. Povh and F. Rendl. Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optimization, 6(3):231–241, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Povh, F. Rendl, and A. Wiegele. A boundary point method to solve semidefinite programs. Computing, 78:277–286, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  57. F. Rendl. Semidefinite relaxations for integer programming. In M. J¨unger Th.M. Liebling D. Naddef G.L. Nemhauser W.R. Pulleyblank G. Reinelt G. Rinaldi and L.A. Wolsey, editors, 50 years of integer programming 1958–2008, pages 687–726. Springer, 2009.

    Google Scholar 

  58. F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Mathematical Programming, 212:307–335, 2010.

    Article  MathSciNet  Google Scholar 

  59. A. Schrijver. A comparison of the Delsarte and Lov´asz bounds. IEEE Transactions on Information Theory, IT-25:425–429, 1979.

    Google Scholar 

  60. A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

    Google Scholar 

  61. H.D. Sherali andW.P. Adams. A hierarchy of relaxations between the continuous and convex hull representations for zero–one programming problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

    Google Scholar 

  62. H.D. Sherali and W.P. Adams. A hierarchy of relaxations and convex hull characterizations for mixed-integer zero–one programming problems. Discrete Appl. Math., 52(1):83–106, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  63. J. Sturm. Theory and algorithms of semidefinite programming. In T. Terlaki H. Frenk, K.Roos and S. Zhang, editors, High performance optimization, pages 1–194. Springer Series on Applied Optimization, 2000.

    Google Scholar 

  64. J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem. SIAM Reviev, 48(4):681–699, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  65. M.J. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming. Optimization Methods and Software, 11:1–46, 1999.

    Article  MathSciNet  Google Scholar 

  66. K.-C. Toh. Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM Journal on Optimization, 14:670 – 698, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  67. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95, 1996.

    MATH  MathSciNet  Google Scholar 

  68. A. Widgerson. Improving the performance guarantee for approximate graph colouring. Journal of the ACM, 30:729– 735, 1983.

    Article  Google Scholar 

  69. A. Wiegele. Nonlinear optimization techniques applied to combinatorial optimization problems. PhD thesis, Alpen-Adria-Universit¨at Klagenfurt, Austria, 2006.

    Google Scholar 

  70. H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.). Handbook of semidefinite programming. Kluwer, 2000.

    Google Scholar 

  71. X. Zhao, D. Sun, and K. Toh. A Newton CG augmented Lagrangian method for semidefinite programming. SIAM Journal on Optimization, 20:1737–1765, 2010.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Rendl, F. (2012). Matrix Relaxations in Combinatorial Optimization. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_17

Download citation

Publish with us

Policies and ethics