Skip to main content

Swarm Intelligence

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Biological Systems

Robotic Systems

Artificial Life Systems

Definition of Swarm

Standard-Mathematics Methods

Swarm Optimization

Non-Linear Differential Equations Methods

Limitations of Standard-Mathematics Methods

Cellular-Computing Methods

Randomness in Swarm Intelligence

Asynchronous Swarms

The Realization of Asynchronous Swarms

Characteristics of Swarm Intelligence

Swarms of Intelligent Units

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Swarm Intelligence:

(Definition 1, Sect. “Definition of the Subject”). The intuitive notion of “Swarm Intelligence” is that of a “swarm” of agents (biological or artificial) which, without central control, collectively (and only collectively) carry out (unknowingly, and in a somewhat‐random way) tasks normally requiring some form of “intelligence”. (Definition 5, Sect. “Swarms of Intelligent Units”). The capability of universal computation carried out with natural asynchrony by a dynamic cellular computing system, none of whose cells can predict the computation done by the swarm.

Swarm Robotics :

The technology of robotic systems capable of Swarm Intelligence.

Stigmergy :

Indirect communication through modification of the environment.

Pheromone :

A chemical that triggers an innate behavioral response in another member of the same animal species

Elementary Swarm:

An ordered set of N units described by the N components v i (\( { i=1,2,\dots,N } \)) of a vector v; any unit i may update the vector, at any time t i , using a function f of K i vector components.

$$ \forall i \in N\colon v_{i}(t+1) = f (\mathbf{v}_{k\in K(i)} (t)) $$
Cellular automaton :

A system, evolving in discrete time steps, with four properties: a grid of cells, a set of possible states of the cells, a neighborhood, and a function which assigns a new state to a cell given the state of the cell and of its neighborhood.

von Neumann architecture:

Computer design that uses one processing unit and one storage unit holding both instructions and data.

Cellular‐computing architecture:

Computer design that uses cellular automata , and related machines, as processors and as storage of instruction and data.

Intelligence :

(working definition for Swarm Intelligence) Ability to carry out universal computation.

Natural asynchrony :

Asynchronous updating characterized by three properties: more than one unit may update at each time step; any unit may update more than once in each updating cycle; and the updating order varies randomly for every updating cycle.

Optimization algorithms:

Algorithms to satisfy a set of constraints and/or optimize (e. g., minimize) a function by systematically choosing the values of the variables from an allowed set.

Swarm optimization :

Ant colony optimization, Particle swarm optimization, and related probabilistic optimization algorithms.

Ant colony optimization :

Probabilistic optimization algorithm where a colony of artificial ants cooperate in finding solutions to optimization problems.

Particle swarm optimization :

Probabilistic optimization algorithm where a swarm of potential solutions (particles) cooperate in finding solutions to discrete optimization problems.

Game of Life :

A cellular automaton designed to simulate life-like phenomena.

Dynamic cellular computing system:

Cellular computing system whose cells are mobile.

Unpredictable system:

A system such that complete knowledge of its state and operation at any given time is insufficient to compute the system's future state before the system reaches it.

Bibliography

Primary Literature

  1. Beni G, Wang J (1989) Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30

    Google Scholar 

  2. Beni G, Wang J (1989) Swarm Intelligence. Proc. 7th Ann Meeting of the Robotics Society of Japan, pp 425–428 (in Japanese)

    Google Scholar 

  3. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ Press, New York

    MATH  Google Scholar 

  4. Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kauffman, San Mateo

    Google Scholar 

  5. Abraham A, Grosan C, Ramos V (2006) Swarm Intelligence in Data Mining (Studies in Computational Intelligence). Springer, vol 34

    Google Scholar 

  6. Engelbrecht AP (2006) Fundamentals of Computational Swarm Intelligence. Wiley, New York

    Google Scholar 

  7. Dorigo M, Gambardella LM, Birattari M, Martinoli A (eds) (2006) Ant Colony Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4–7, (2006), Proceedings (Lecture Notes in Computer Science). Springer, Berlin

    Google Scholar 

  8. IEEE Swarm Intelligence Symposium, Honolulu, Hawaii, 1–5 April 2007. http://www.computelligence.org/sis/2007/?q=node/2. Accessed 6 Mar 2008

  9. Dorigo M (ed) Swarm Intelligence, ISSN: 1935-3812. Springer US (to begin publication Summer 07)

    Google Scholar 

  10. Beni G (2004) From Swarm Intelligence to Swarm Robotics. In: Sahin E, Spear WM (eds.) Swarm Robotics March, Revised Selected Papers, SAB 2004 International Workshop, Santa Monica, CA, 17 July 2004. Lecture Notes in Computer Science vol 3342. Springer, Berlin, pp 1–9

    Google Scholar 

  11. Goss S, Aron S, Deneubourg JL, Pasteel JM (1989) Self‐organized shortcuts in the Argentine ant. Naturwissenschaften 76:579–581

    Article  Google Scholar 

  12. Dorigo M (1992) Optimization, Learning and Natural Algorithms. Ph D Thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan (in Italian)

    Google Scholar 

  13. Dorigo M, Stutzle T (2004) Ant Colony Optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  14. Olariu S, Zomaya AY (2005) Handbook of Bioinspired Algorithms and Applications. Chapman Hall/Crc Computer Information Science, Boca Raton

    Book  Google Scholar 

  15. Passino K (2004) Biomimicry for Optimization, Control, and Automation. Springer, London

    Google Scholar 

  16. Reynolds C (1987) Flocks, Herds, and Schools: a distributed behavioral model. Computer Graphics 21(4):25–34

    Article  Google Scholar 

  17. Moere AV (2004) Information Flocking: Time-Varying Data Visualization using Boid Behaviors. Proc Eighth Int Conf Inform Visual, pp 409–414

    Google Scholar 

  18. Eftimie R, de Vries G, Lewis MA (2007) Complex spatial group patterns result from different animal communication mechanisms. Proc Nat Acad Sci 104(17)

    Article  Google Scholar 

  19. Parker LE, Schneider FE, Schultz AC (2005) Multi-Robot Systems. From Swarms to Intelligent Automata, vol 3: Proceedings from the 2005 International Workshop on Multi-Robot Systems. Springer, Dordrecht

    Book  Google Scholar 

  20. Sahin E, Spears WM (2005) Swarm Robotics. SAB 2004 International Workshop, Santa Monica, CA, July 17, 2004, Revised Selected Papers (Lecture Notes in Computer Science) Springer, Berlin

    Google Scholar 

  21. Winfield A, Redi J http://www.robocomm.org/2007/index.shtml. Accessed 6 Mar 2008

  22. Sahin EL, Spears WM, Winfield AFT (Eds.) (2007) Swarm Robotics. Second SAB 2006 International Workshop, Rome, Italy, September 30-October 1, 2006 Revised Selected Papers. Series: Lecture Notes in Computer Science vol 4433. Springer, Berlin

    Google Scholar 

  23. Baldassarre G, Trianni V, Bonani M, Mondada F, Dorigo M, Nolfi S (2007) Self‐organized coordinated motion in groups of physically connected robots. IEEE Trans Syst Man Cybern Part B: Cybernetics 37(1):224–239

    Google Scholar 

  24. Gazi V, Passino KM (2004) Stability Analysis of Social Foraging Swarms. IEEE Trans Syst Man Cybern B 34:539–557

    Article  Google Scholar 

  25. Balch T, Dellaert F, Feldman A, Guillory A, Isbell CL Jr, Khan Z, Pratt SC, Stein AN, Wilde H (2006) How AI and Multi-Robot Systems research will accelerate our understanding of social animal behavior. Proc IEEE 94(7):1445–1463

    Article  Google Scholar 

  26. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom RA-2(1):14

    Article  MathSciNet  Google Scholar 

  27. Johnson N, Galata A, Hogg DB (1998) The acquisition and use of interaction behavior models. In: Proc IEEE Computer Society Conf Computer Vision and Pattern Recognition, pp 866–871, IEEE Computer Society Press, Santa Barbara

    Google Scholar 

  28. Curtis SA, Mica J, Nuth J, Marr G, Rilee ML, Bhat M (2000) Autonomous Nano‐Technology Swarm. Proceedings of the 51st International Aeronautical Congress, IAF-00-Q5.08

    Google Scholar 

  29. ANTS website: http://ants.gsfc.nasa.gov, Goddard Ants Team. Accessed 6 Apr 2008

  30. Brooks RA (1991) Intelligence without representation. Artif Intell 47:139–159

    Article  Google Scholar 

  31. Dorigo M, Tuci E, Groß R, Trianni V, Labella TH, Nouyan S, Ampatzis C, Deneubourg J-L, Baldassarre G, Nolfi S, Mondada F, Floreano D, Gambardella LM (2004) The SWARM-BOTS project. In: Sahin E, Spears WM (eds) Proc. of the 1st Int. Workshop on Swarm Robotics. LNCS vol 3342. Springer, Berlin, pp 26–40

    Google Scholar 

  32. Mondada F, Pettinaro GC, Guignard A, Kwee IV, Floreano D, Deneubourg J-L, Nolfi S, Gambardella LM, Dorigo M (2004) SWARM-BOT: A new distributed robotic concept. Auton Robots 17(2–3):193–221

    Article  Google Scholar 

  33. Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneubourg J-L, Dorigo M (2005) The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robot Autom Mag 12(2):21–28

    Article  Google Scholar 

  34. Rocha LM, Yaeger LS, Bedau MA, Floreano D, Goldstone RL, Vespignani A (2006) Artificial Life X Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, Cambridge

    Google Scholar 

  35. Traub J (ed) Journal of Complexity. Elsevier http://www.elsevier.com/wps/find/journaldescription.cws_home/622865/description#description

  36. Nicolis G, Prigogine I (1977) Self‐Organization in Non‐Equilibrium Systems. Wiley, New York

    Google Scholar 

  37. Sipper M (1999) The Emergence of Cellular Computing. IEEE Comput 32(7):18–26

    Article  Google Scholar 

  38. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE int'l conf. on neural networks vol IV, pp 1942–1948. IEEE service center, Piscataway

    Google Scholar 

  39. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated Annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  40. Snyman JA (2005) Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient‐Based Algorithms. Springer Science-Business Media, New York

    MATH  Google Scholar 

  41. Mogilner A, Edelstein‐Keshet L, Bent L, Spiros A (2003) Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol 47:353–389

    Google Scholar 

  42. Murray JD (2002) Mathematical Biology I: An Introduction, 3rd edn., Interdiscip Appl Math 17. Springer, New York

    Google Scholar 

  43. Topaz CM, Bertozzi A (2004) Swarming Patterns in two‐dimensional kinematic model for biological groups. SIAM J Appl Math 65(1):152–174

    Article  MathSciNet  MATH  Google Scholar 

  44. Beni G (1988) The concept of cellular robot. Proc 3rd IEEE Symposium on Intelligent Control, pp 57–61. Arlington

    Google Scholar 

  45. Beni G, Hackwood S (1992) Stationary waves in cyclic swarms. In: Proc IEEE International Symposium on Intelligent Control. August 10–13, 1992. Institute of Electrical and Electronics Engineers (IEEE), Glasgow

    Google Scholar 

  46. Beni G (1992) Distributed Robotic Systems and Swarm Intelligence. J Robot Soc Japan (in Japanese) 10:31–37

    Google Scholar 

  47. Sipper M (1997) Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Lecture Notes in Computer Science. Springer

    Google Scholar 

  48. Gottfredson LS (1997) Mainstream Science on Intelligence: An Editorial with 52 Signatories, History, and Bibliography. Intelligence 24(1):13–23

    Article  Google Scholar 

  49. Cooper SB (2003) Computability Theory. Chapman Hall/CRC, Boca Raton

    Google Scholar 

  50. Wolfram S (2002) A New Kind of Science. Wolfram Media, Champaign

    MATH  Google Scholar 

  51. Gardner M (1970) The fantastic combinations of John Conway's new solitaire game ‘life’. Sci Am 223:120–123

    Article  Google Scholar 

  52. Johnson DS, McGeoch LA (2003) The traveling salesman problem: A case study in local optimization. In: Aarts EHL, Lenstra JK (eds) Local Search in Combinatorial Optimization, pp 215–310. Wiley, Chichester

    Google Scholar 

  53. Huberman BA, Glance NS (1993) Evolutionary Games and computer simulations. Proc Nati Acad Sci USA 90:7716–7718

    Article  MATH  Google Scholar 

  54. Liang P, Beni G (1995) Robotic Morphogenesis. Proc Int Conf Robot Automat 2:2175–2180

    Google Scholar 

  55. Turing AM (1952) The Chemical Basis for Morphogenesis. Phil Trans Roy Soc London B 237:37–72

    Article  Google Scholar 

  56. Cornforth D, Green D, Newth D (2005) Ordered Asynchronous Processes in Multi-Agent Systems. Physica D 204(1–2):70–82

    Article  MathSciNet  Google Scholar 

  57. Bersini H, Detour V (1994) Asynchrony induces stability in CA based models. In: Brooks RA, Maes P (eds) Artificial Life IV. MIT Press, Cambridge, pp 382–387

    Google Scholar 

  58. Beni G (2004) Order by Disordered Action in Swarms. In: Sahin E, Spear WM (eds.) (2005) Swarm Robotics, SAB 2004 International Workshop. LNCS, vol 3342. Springer, Berlin, pp 153–171

    Google Scholar 

  59. Schonfisch B, deRoos A (1999) Synchronous and Asynchronous Updating in Cellular Automata. Biosyst 51:123–143

    Article  Google Scholar 

  60. Sipper M, Tomassini M, Capcarrere MS (1997) Evolving asynchronous and scalable non‐uniform cellular automata. In: Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA97). Springer, New York

    Google Scholar 

  61. Clapham N (2002) Emergent synchrony: simple asynchronous update rules can produce synchronous behavior. In: Sarker R, McKay RI, Gen M, Namatame A (eds) Proceedings of the Sixth Australia–Japan Joint Workshop on Intelligent and Evolutionary Systems. Australian National University, Canberra, pp 41–46

    Google Scholar 

  62. Nehaniv CL (2002) Evolution in asynchronous cellular automata. In: Standish RK, Abbass HA, Bedau MA (eds) Proceedings of the Eighth Conference on Artificial Life. MIT Press, Cambridge, pp 65–74

    Google Scholar 

  63. Nakamura K (1974) Asynchronous cellular automata and their computational ability. Syst Comput Controls 5(5):58–66

    Google Scholar 

  64. Lee J, Peper F, Adachi S, Morita K (2004) Universal delay‐insensitive circuits with bi‐directional and buffering lines. IEEE Trans Comput 53(8):1034–1046

    Article  Google Scholar 

  65. Adachi S, Peper F, Lee J (2004) Universality of hexagonal asynchronous totalistic cellular automata. In: Chopard B, Hoekstra AG, Sloot PMA (eds) (2004) Cellular Automata, 6th International Conference on Cellular Automata for Research and Industry. LNCS, vol 3305. Springer, Berlin, pp 91–100

    Google Scholar 

  66. Takada Y, Isokawa T, Peper F, Matsui N (2006) Construction Universality in purely asynchronous cellular automata. J Comput Syst Sci 72:1368–1385

    Article  MathSciNet  MATH  Google Scholar 

  67. von Neumann J (1966) Theory of Self‐Reproducing Automata. Univ Illinois Press, Champaign (edited and completed by Burks AW)

    Google Scholar 

  68. Langton CG (1984) Self‐reproduction in cellular automata. Phys D 10:135–144

    Article  Google Scholar 

  69. Wolfram S (1985) Undecidability and Intractability in Theoretical Physics. Phys Rev Lett 54:735–738

    Article  MathSciNet  Google Scholar 

  70. Weiss G (2000) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge

    Google Scholar 

Books and Reviews

  1. References [3, 4, 6, 10, 13, 14, 15, 48, 51] are the main books and reviews. The journal Swarm Intelligence [9] is the main source for new research results. The following provide additional general material related to Swarm Intelligence.

    Google Scholar 

  2. Sahin E, Spears WM (2005) Swarm Robotics: SAB 2004 International Workshop, Santa Monica, CA, July 17, 2004, Revised Selected Papers (Lecture Notes in Computer Science). Springer, Berlin

    Google Scholar 

  3. Dorigo M, Sahin E (2004) Swarm Robotics– special issue editorial. Autonom Robot 17(2–3)111–113

    Article  Google Scholar 

  4. Sipper M (2002) Machine Nature: The Coming Age of Bio‐Inspired Computing. McGraw-Hill, New York

    Google Scholar 

  5. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self‐Organization in Biological Systems. Princeton Univ Press, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Beni, G. (2012). Swarm Intelligence. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_195

Download citation

Publish with us

Policies and ethics