Skip to main content

Immune Systems Evolution

  • Chapter
Sensing in Nature

Abstract

Animals and plants have a complex and effective immune system that protect them from invading microorganisms. The mechanisms of immunity are evolutionarily selected throughout host-pathogen interaction to be tolerant to self-antigens and to recognize nonself molecular patterns. Plants and animals share a germ line encoded diversity of receptors capable of nonself recognition. Somatic rearranging of immunological receptors emerges at early stages of vertebrate evolution, allowing these animals to generate an almost unlimited diversity of receptors. Nevertheless, this recombinational system came with a high price: The potential for self-reactivity. In this chapter we will discuss the differences and the striking similarities of the immune mechanisms across different taxa in the context of evolution and the selective pressures that favoured the development of the adaptive immune system and the lymphoid organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali AS, Townes CL, Hall J et al. Maintaining a sterile urinary tract: the role of antimicrobial peptides. J Urol 2009; 182(1):21–28.

    Article  PubMed  CAS  Google Scholar 

  2. Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 2004; 75(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  3. Dann SM, Eckmann L. Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol 2007; 23(2):115–120.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrandon D, Imler JL, Hetru C et al. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007; 7(11):862–874.

    Article  PubMed  CAS  Google Scholar 

  5. Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 2002; 3(2):121–126.

    Article  PubMed  CAS  Google Scholar 

  6. Schneider JJ, Unholzer A, Schaller M et al. Human defensins. J Mol Med 2005; 83(8):587–595.

    Article  PubMed  CAS  Google Scholar 

  7. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005; 6(6):551–557.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang ZT, Zhu SY. Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol Biol 2009; 18(5):549–556.

    Article  PubMed  CAS  Google Scholar 

  9. Chisholm ST, Coaker G, Day B et al. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124(4):803–814.

    Article  Google Scholar 

  10. Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173:89–97.

    Article  PubMed  CAS  Google Scholar 

  11. Nurnberger T, Brunner F, Kemmerling B et al. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 2004; 198:249–266.

    Article  PubMed  Google Scholar 

  12. Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach. Nat Rev Genet 2008; 9(3):165–178.

    Article  PubMed  CAS  Google Scholar 

  13. Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 2008; 20(1):10–16.

    Article  PubMed  CAS  Google Scholar 

  14. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4):783–801.

    Article  PubMed  CAS  Google Scholar 

  15. Leclerc V, Reichhart JM. The immune response of Drosophila melanogaster. Immunol Rev 2004; 198:59–71.

    Article  PubMed  CAS  Google Scholar 

  16. Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21(2):186–195.

    Article  PubMed  CAS  Google Scholar 

  17. Kurata S, Ariki S, Kawabata S. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology 2006; 211(4):237–249.

    Article  PubMed  CAS  Google Scholar 

  18. Arnot CJ, Gay NJ, Gangloff M. Molecular mechanism that induces activation of Spatzle, the ligand for the Drosophila Toll receptor. J Biol Chem 2010; 285(25):19502–19509.

    Article  PubMed  CAS  Google Scholar 

  19. Kaneko T, Silverman N. Bacterial recognition and signalling by the Drosophila IMD pathway. Cell Microbiol 2005; 7(4):461–469.

    Article  PubMed  CAS  Google Scholar 

  20. Rock FL, Hardiman G, Timans JC et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998; 95(2):588–593.

    Article  PubMed  CAS  Google Scholar 

  21. Means TK, Golenbock DT, Fenton MJ. Structure and function of Toll-like receptor proteins. Life Sci 2000; 68(3):241–258.

    Article  PubMed  CAS  Google Scholar 

  22. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5):373–384.

    Article  PubMed  CAS  Google Scholar 

  23. Jones JD, Dangl JL. The plant immune system. Nature 2006; 444(7117):323–329.

    Article  PubMed  CAS  Google Scholar 

  24. Nishimura MT, Dangl JL. Arabidopsis and the plant immune system. Plant J 2010; 61(6):1053–1066.

    Article  PubMed  CAS  Google Scholar 

  25. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature 2001; 411(6839):826–833.

    Article  PubMed  CAS  Google Scholar 

  26. DeYoung BJ, Innes RW. Plant NBS-LR proteins in pathogen sensing and host defense. Nat Immunol 2006; 7(12):1243–1249.

    Article  PubMed  CAS  Google Scholar 

  27. Smith LC, Clow LA, Terwilliger DP. The ancestral complement system in sea urchins. Immunol Rev 2001; 180:16–34.

    Article  PubMed  CAS  Google Scholar 

  28. Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2002; 2(5):346–353.

    Article  PubMed  CAS  Google Scholar 

  29. Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics 2006; 58(9):701–713.

    Article  PubMed  CAS  Google Scholar 

  30. Takayama S, Isogai A. Self-incompatibility in plants. Annu Rev Plant Biol 2005; 56:467–489.

    Article  PubMed  CAS  Google Scholar 

  31. Muller WE, Blumbach B, Muller IM. Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation 1999; 68(9):1215–1227.

    Article  PubMed  CAS  Google Scholar 

  32. Muller WE, Krasko A, Skorokhod A et al. Histocompatibility reaction in tissue and cells of the marine sponge Suberites domuncula in vitro and in vivo: central role of the allograft inflammatory factor 1. Immunogenetics 2002; 54(1):48–58.

    Article  PubMed  Google Scholar 

  33. Rinkevich B. Primitive immune systems: are your ways my ways? Immunol Rev 2004; 198:25–35.

    Article  PubMed  Google Scholar 

  34. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2010; 11(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  35. Hofmann J, Greter M, Du Pasquier L et al. B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends Immunol 2010; 31(4):144–153.

    Article  PubMed  CAS  Google Scholar 

  36. Kasahara M. The 2R hypothesis: an update. Curr Opin Immunol 2007; 19(5):547–552.

    Article  PubMed  CAS  Google Scholar 

  37. Kulski JK, Shiina T, Anzai T et al. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 2002; 190:95–122.

    Article  PubMed  CAS  Google Scholar 

  38. Nagawa F, Kishishita N, Shimizu K et al. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat Immunol 2007; 8(2):206–213.

    Article  PubMed  CAS  Google Scholar 

  39. Pancer Z, Amemiya CT, Ehrhardt GR et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 2004; 430(6996):174–180.

    Article  PubMed  CAS  Google Scholar 

  40. Boehm T, Bleul CC. The evolutionary history of lymphoid organs. Nat Immunol 2007; 8(2):131–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos López-Larrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rodríguez, R.M., López-Vázquez, A., López-Larrea, C. (2012). Immune Systems Evolution. In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_15

Download citation

Publish with us

Policies and ethics