Skip to main content

Effects of Prebiotics and Probiotics on the Host Immune Response

  • Chapter
  • First Online:
Direct-Fed Microbials and Prebiotics for Animals

Abstract

The gastrointestinal (GI) tract is the largest interface between an animal’s internal milieu and its exterior environment. As such, it forms a physical barrier between the two environments. However, the function of the GI tract in the well-being of an animal is more complex than this passive role. The GI tract not only regulates the selective entry of nutrients while keeping vigilant against pathogens, it is largely responsible for shaping the immune response. Through specialized receptors and other general mechanisms, the GI tract senses changes in its environment and actively responds to the changes. These responses allow the intestine to contribute to the defense against microbes as well as control and regulate the local immune response. In addition, the luminal microbial ecosystem is a highly complex community of primarily bacterial microbes that communicates extensively with itself and the host. The microbial community has major influences on the host, including effects on nutrient absorption, cancer, inflammation, host metabolism, barrier function, and gut function (neuromotor, immunological, vascular) among others. Regulation of the immune response is the basis for the use of probiotics and prebiotics reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSA:

Bovine serum albumin

GALT:

Gut-associated lymphoid tissue

GI:

Gastrointestinal

Ig:

Immunoglobulin

IFN:

Interferon

IL:

Interleukin

LPS:

Lipopolysaccharide

MAMP:

Microbial-associated molecular pattern

NLR:

NOD-like receptor

PRR:

Pattern recognition receptor

SE:

Salmonella enterica serovar Enteritidis

ST:

Salmonella enterica serovar Typhimurium

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TT:

Tetanus toxoid

References

  • Abreu, M.T. 2010. Toll-like receptor signaling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nature Reviews Immunology 10: 131–143.

    Article  CAS  Google Scholar 

  • Akbari, M.R., H.R. Haghighi, J.R. Chambers, et al. 2008. Expression of antimicrobial peptides in cecal tonsils of chickens treated with probiotics and infected with Salmonella enterica Serovar Typhimurium. Clinical and Vaccine Immunology 15: 1689–1693.

    Article  CAS  Google Scholar 

  • Apata, D.F. 2008. Growth performance, nutrient digestibility, and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. Journal of the Science of Food and Agriculture 88: 1253–1258.

    Article  CAS  Google Scholar 

  • Artis, D. 2008. Epithelial cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology 8: 413–420.

    Article  Google Scholar 

  • Bauer, E., B.A. Williams, H. Smidt, et al. 2006. Influence of the gastrointestinal microbiota on the development of the immune system in young animals. Current Issues Intestinal Microbiology 7: 35–52.

    CAS  Google Scholar 

  • Baum, B., E.M. Liebler-Tenorio, M.L. Eriss, et al. 2002. Saccharamyces boulardii and Bacillus cereus var. toyoi influence the morphology and the mucins of the intestine of pigs. Zeitschrift für Gastroenterologie 40: 277–284.

    Article  CAS  Google Scholar 

  • Bontempo, V., A. Di Giancamillo, G. Savoini, et al. 2006. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Animal Feed Science and Technology 129: 224–236.

    Article  Google Scholar 

  • Brisbin, J.T., H. Zhou, J. Gong, et al. 2008. Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Developmental and Comparative Immunology 32: 563–574.

    Article  CAS  Google Scholar 

  • Carpenter, S., and L.A. O’Neill. 2007. How important are Toll-like receptors for antimicrobial responses? Cellular Microbiology 9: 1891–1901.

    Article  CAS  Google Scholar 

  • Carroll, M.C., and A.P. Prodeus. 1999. Linkages of innate and adaptive immunity. Current Opinion in Immunology 10: 36–40.

    Article  Google Scholar 

  • Chen, H.L., D.F. Li, B.Y. Chang, et al. 2003. Effects of Chinese herbal polysaccharides on the immunity and growth performance of young broilers. Poultry Science 82: 364–370.

    CAS  Google Scholar 

  • Corthesy, B., H.R. Gaskins, and A. Mercenier. 2007. Cross-talk between probiotic bacteria and the host immune system. Journal of Nutrition 137: 781S–790S.

    CAS  Google Scholar 

  • Dalloul, R.A., H.S. Lillehoj, T.A. Shellem, et al. 2003a. Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic. Poultry Science 82: 62–66.

    CAS  Google Scholar 

  • Dalloul, R.A., H.S. Lillehoj, T.A. Shellem, et al. 2003b. Intestinal immunmodulation by Vitamin A deficiency and Lactobacillus-based probiotic in Eimeria acervulina-infected broiler chickens. Avian Diseases 47: 1313–1320.

    Article  Google Scholar 

  • Duncker, S.C., A. Lorentz, B. Schroeder, et al. 2006. Effect of orally administered probiotic E. coli strain Nissle 1917 on intestinal mucosal immune cells of healthy young pigs. Veterinary Immunology and Immunopathology 111: 239–250.

    Article  CAS  Google Scholar 

  • Farnell, M.B., A.M. Donoghue, F.S. de los Santos, et al. 2006. Upregulation of oxidative burst and degranulation in chicken heterophils stimulated with probiotic bacteria. Poultry Science 85: 1900–1906.

    CAS  Google Scholar 

  • Fearon, D.T., and R.M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response. Science 272: 50–54.

    Article  CAS  Google Scholar 

  • Fukata, T., K. Sasai, T. Miyamoto, et al. 1999. Inhibitory effect sof competitive exclusion and fructooligosaccharide, singly and in combination, on Salmonella colonization in chicks. Journal of Food Protection 62: 229–233.

    CAS  Google Scholar 

  • Haghighi, H.R., J. Gong, C.I. Gyles, et al. 2005. Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology 12: 1387–1392.

    CAS  Google Scholar 

  • Haghighi, H.R., J. Gong, C.I. Gyles, et al. 2006. Probiotics stimulate production of natural antibodies in chickens. Clinical and Vaccine Immunology 13: 975–980.

    Article  CAS  Google Scholar 

  • Haghighi, H.R., M. Faizel, A. Careem, et al. 2008. Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Veterinary Microbiology 136: 225–233.

    Article  Google Scholar 

  • He, B., W. Xu, P.A. Santini, et al. 2007. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26: 812–826.

    Article  CAS  Google Scholar 

  • Heinrichs, A.J., C.M. Jones, J.A. Elizondo-Salzar, et al. 2009. Effects of prebiotic supplement on health of neonatal dairy calves. Livestock Science 125: 149–154.

    Article  Google Scholar 

  • Higgins, S.E., G.F. Erf, J.P. Higgins, et al. 2007. Effect of probiotic treatment on intestinal macrophage numbers and phagocytosis of Salmonella Enteritidis by abdominal exudates cells. Poultry Science 86: 2315–2321.

    Article  CAS  Google Scholar 

  • Hord, N.G. 2008. Eukaryotic-microbiota crosstalk: Potential mechanisms for health benefits of probiotics and probiotics. Annual Review of Nutrition 28: 215–231.

    Article  CAS  Google Scholar 

  • Huang, M.K., Y.J. Choi, R. Houde, et al. 2004. Effects of lactobacilli and acidophilic fungus on the production performance and immune responses in broiler chickens. Poultry Science 83: 788–795.

    CAS  Google Scholar 

  • Janardhana, V., M.M. Broadway, M.P. Bruce, et al. 2009. Prebiotics modulate immune responses in the gut-assoicated lymphoid tissue of chickens. Journal of Nutrition 139: 1404–1409.

    Article  CAS  Google Scholar 

  • Janeway, C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 1–28.

    Article  CAS  Google Scholar 

  • Jiang, Z., G. Schatzmayr, M. Mohno, et al. 2010. Net effect of acute phase response-partial alleviation with probiotic supplementation. Poultry Science 89: 28–33.

    Article  CAS  Google Scholar 

  • Kabir, S.M.L., M.M. Rahman, M.B. Rahman, et al. 2004. The dynamics of probiotics on growth performance and immune response in broilers. International Journal of Poultry Science 3: 361–364.

    Article  Google Scholar 

  • Kelley, D., S. Conway, and R. Aminov. 2005. Commensal gut bacteria: Mechanisms of immune modulation. Trends in Microbiology 26: 326–333.

    Google Scholar 

  • Khaksefidi, M.A., and T. Ghoorchi. 2006. Effect of probiotix on performance and immunocompetence in broiler chicks. International Journal of Poultry Science 43: 296–300.

    Article  CAS  Google Scholar 

  • Kim, J.G., S.J. Lee, and M.F. Kagnoff. 2004. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by Toll-like receptors. Infection and Immunity 72: 1487–1495.

    Article  CAS  Google Scholar 

  • Koenen, M.E., J. Kramer, R. van der Hulst, et al. 2004. Immunmodulation by probiotic lactobacilli in layer and meat-type chickens. British Poultry Science 45: 355–366.

    Article  CAS  Google Scholar 

  • Li, S.P., X.J. Zhao, and J.Y. Wang. 2009. Synergy of Astragalus polysaccharides and probiotics (Lactobaciilus and Bacillus cereus) in immunity and intestinal microbiota in chicks. Poultry Science 88: 519–525.

    Article  CAS  Google Scholar 

  • Mathivanan, R., K. Kalaiarasi, and K. Panchagavya. 2007. Andrographis paniculata as alternative to antibiotic growth promoters on haematological, serum biochemical parameters and immune status of broilers. International Journal of Poultry Science 44: 198–204.

    Article  CAS  Google Scholar 

  • Matson, K.D., R.E. Rickelfs, and K. Klasing. 2005. A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Developmental and Comparative Immunology 29: 275–286.

    Article  CAS  Google Scholar 

  • Medzhitov, R., and C.A. Janeway Jr. 1997a. Innate immunity: The virtues of a nonclonal system of recognition. Cell 91: 295–298.

    Article  CAS  Google Scholar 

  • Medzhitov, R., and C.A. Janeway Jr. 1997b. Innate immunity: Impact of the adaptive immune response. Current Opinion in Immunology 9: 4–9.

    Article  CAS  Google Scholar 

  • Medzhitov, R., and C.A. Janeway Jr. 2000. Innate immune recognition: Mechanisms and pathways. Immunological Reviews 73: 89–97.

    Article  Google Scholar 

  • Monteleone, G., H. Peluso, D. Fina, et al. 2006. Bacteria and mucosal immunity. Digestive and Liver Disease 38(Suppl. 2): S256–S260.

    Article  Google Scholar 

  • Nayebpor, M., M. Farhomand, and A. Hashemi. 2007. Effects of different levels of direct fed microbial (Primalac) on growth performance and humoral immune response in broiler chickens. Journal of Animal and Veterinary Advances 6: 1308–1313.

    Google Scholar 

  • Neish, A.S. 2009. Microbes in gastrointestinal health and disease. Gastroenterology 136: 65–80.

    Article  Google Scholar 

  • Pollmann, M., M. Nordoff, A. Pospischil, et al. 2005. Effects of a probiotic strain of Enterococcus faecium on the rate of natural Chamydia infection in swine. Infection and Immunity 73: 4346–4353.

    Article  CAS  Google Scholar 

  • Rakoff-Nahoun, S., J. Paglino, F. Eslami-Varzaneh, et al. 2004. Recognition of commensal microflora by Toll-like receptors for intestinal homeostasis. Cell 118: 229–241.

    Article  Google Scholar 

  • Revolledo, L., S.A. Ferriera, and A.J. Ferriera. 2006. Prevention of Salmonella Typhimurium colonization and organ invasion by combination treatment in broiler chicks. Poultry Science 88: 734–743.

    Article  Google Scholar 

  • Sansonetti, P.J. 2004. War and peace at mucosal surfaces. Nature Reviews Immunology 4: 953–964.

    Article  CAS  Google Scholar 

  • Scharek, L., J. Guth, K. Reiter, et al. 2005. Inlfuence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Veterinary Immunology and Immunopathology 105: 151–161.

    Article  CAS  Google Scholar 

  • Scharek, L., B.J. Altherr, C. Tolke, et al. 2007a. Influence of the probiotic Bacillus cereus var toyoi on the intestinal immunity of piglets. Veterinary Immunology and Immunopathology 120: 136–147.

    Article  CAS  Google Scholar 

  • Scharek, L., J. Guth, M. Filter, et al. 2007b. Impact of the probiotic Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var. toyoi NCIMB 40112 on the development of serum IgG and fecal IgA of sows and their piglets. Archives of Animal Science 61: 223–234.

    Article  CAS  Google Scholar 

  • Schierack, P., M. Filter, L. Scharek, et al. 2009. Effects of Bacillus cereus var. toyoi on immune parameters of pregnant sows. Veterinary Immunology and Immunopathology 127: 26–37.

    Article  CAS  Google Scholar 

  • Szabo, I., L.H. Wieler, K. Tedin, et al. 2009. Influence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal invasion model. Applied and Environmental Microbiology 75: 2621–2628.

    Article  CAS  Google Scholar 

  • Taras, D., W. Vahjen, M. Macha, et al. 2006. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. Journal of Animal Science 84: 608–617.

    CAS  Google Scholar 

  • Thompson, A., E. Van Moorlehem, and P. Aich. 2009. Probiotic-induced priming of innate immunity to protect against rotaviral infection. Probiotics and Antimicrobial Proteins. doi:10.1007/s12602-009-9032-9.

  • Trevisi, P., S. De Flippo, L. Minieri, et al. 2008. Effect of fructo-oligosaccharides and different levels of Bifidobacterium animalis in a weaning diet on bacterial translocation and Toll-like receptor gene expression in pigs. Nutrition 24: 1023–1029.

    Article  CAS  Google Scholar 

  • Trinchieri, G., and A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defense. Nature Reviews Immunology 7: 179–190.

    Article  CAS  Google Scholar 

  • Winkler, P., D. Ghadimi, J. Schrezenmeir, et al. 2007. Molecular and cellular basis of microflora–host interactions. Journal of Nutrition 137: 756S–772S.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Kogut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kogut, M.H., Swaggerty, C.L. (2012). Effects of Prebiotics and Probiotics on the Host Immune Response. In: Callaway, T., Ricke, S. (eds) Direct-Fed Microbials and Prebiotics for Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1311-0_5

Download citation

Publish with us

Policies and ethics