Skip to main content

A Rayleigh Mixture Model for IVUS Imaging

  • Chapter
  • First Online:
Ultrasound Imaging

Abstract

Carotid and coronary vascular problems, such as heart attack or stroke, are often originated in vulnerable plaques. Hence, the accurate characterization of plaque echogenic contents could help in diagnosing such lesions.

The Rayleigh distribution is widely accepted as an appropriate model to describe plaque morphology although it is known that other more complex distributions depending on multiple parameters are usually needed whenever the tissues show significant heterogeneity.In this chapter a new model to describe the tissue echo-morphology by using a mixture of Rayleigh distribution is described. This model, called Rayleigh Mixture Model (RMM), combines the robustness of a mixture model with the mathematical simplicity and adequacy of the Rayleigh distributions to deal with the speckle multiplicative noise that corrupts the ultrasound images.

The method for the automatic estimation of the RMM mixture parameters by using the Expectation Maximization (EM) algorithm is described.The performance of the proposed model is evaluated with a database of in-vitro IVUS samples. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spagnoli LG (2004) Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. J Am Med Assoc 292(15):1845–1852

    Article  CAS  Google Scholar 

  2. Burckhardt C (1978) Speckle in ultrasound B-mode scans. IEEE Trans Son Ultrason SU-25(1):1–6

    Google Scholar 

  3. Nicolaides AN, Kakkos SK, Griffin M, Sabetai M, Dhanjil S et al (2005) Severity of asymptomatic carotid stenosis and risk of ipsilateral hemispheric ischaemic events: results from the ACSRS study. Eur J Vasc Endovasc Surg 30(3):275–284

    Article  CAS  PubMed  Google Scholar 

  4. Loizou CP, Pattichis CS (2008) Despeckle filtering algorithms and software for ultrasound imaging. Morgan & Claypool, San Rafael

    Google Scholar 

  5. Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelectrics Freq Contr 52(10):1653–1669

    Article  Google Scholar 

  6. Sanches JM, Nascimento JC, Marques JS (2008) Medical image noise reduction using the sylvester-lyapunov equation. IEEE Trans Image Process 17(9):1522–1539

    Article  PubMed  Google Scholar 

  7. Szabo TL (2004) Diagnostic ultrasound imaging: inside out. Academic, New York

    Google Scholar 

  8. Thijssen J (2003) Ultrasonic speckle formation, analysis and processing applied to tissue characterization. Pattern Recogn Lett 24(4–5):659–675

    Article  Google Scholar 

  9. Diethrich E et al (2007) Virtual histology intravascular ultrasound assessment of carotid artery disease: the carotid artery plaque virtual histology evaluation (CAPITAL) study. J Endovasc Therap 14(5):676–686

    Article  Google Scholar 

  10. Gussenhoven E, Essed C, Frietman P (1989) Intravascular ultrasonic imaging: histologic and echographic correlation. Eur J Vascu Surg 3:571–576

    Article  CAS  Google Scholar 

  11. Mintz GS, Nissen SE, Anderson WD (2001) American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus). J Am College Cardiol 37:1478–1492

    Article  CAS  Google Scholar 

  12. Zhang X, McKay CR, Sonka M (1998) Tissue characterization in intravascular ultrasound images. IEEE Trans Med Imag 17(6):889–899

    Article  CAS  Google Scholar 

  13. Pujol O, Rosales M, Radeva P, Nofrerias-Fernandez E (2003) Intravascular ultrasound images vessel characterization using adaboost. In: Functional imaging and modelling of the heart: lecture notes in computer science, pp 242–251

    Google Scholar 

  14. Granada J et al (2007) In vivo plaque characterization using intravascular ultrasound virtual histology in a porcine model of complex coronary lesions. Arterioscler Thromb Vasc Biol 27(2):387–393

    Article  CAS  PubMed  Google Scholar 

  15. Nair A, Kuban B, Tuzcu E, Schoenhagen P, Nissen S, Vince D (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106:2200–2206

    Article  PubMed  Google Scholar 

  16. DeMaria A, Narula J, Mahamud E, Tsimikas S (2006) Imaging vulnerable plaque by ultrasound. J Am College Cardiol 47(8):32–39

    Article  Google Scholar 

  17. Sathyanarayana S, Carlier S, Li W, Thomas L (2009) Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 5(1):133–139

    Article  PubMed  Google Scholar 

  18. Lopes A, Touzi R, Nezry E (1990) Adaptive speckle filters and scene heterogeneity. IEEE Trans Geosci Remote Sens 28(6):992–1000

    Article  Google Scholar 

  19. Eltoft T (2006) Modeling the amplitude statistics of ultrasonic images. IEEE Trans Med Imag 25(2):229–240; Comparative Study.

    Google Scholar 

  20. Prager RW, Gee AH, Treece GM, Berman LH (2003) Decompression and speckle detection for ultrasound images using the homodyned k-distribution. Pattern Recogn Lett 24(4–5):705–713

    Article  Google Scholar 

  21. Jakeman E (1984) Speckle statistics with a small number of scatterers. Optic Eng 23:453–461

    Article  Google Scholar 

  22. Dutt V, Greenleaf JF (1994) Ultrasound echo envelope analysis using a homodyned k dis- tribution signal model. Ultrason Imag 16(4):265–287

    Article  CAS  Google Scholar 

  23. Shankar PM (2001) Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Trans Ultrason Ferroelectrics Freq Contr 48(6):1716–1720

    Article  CAS  Google Scholar 

  24. Dempster AP, Laird NM, Rdin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B 39:1–38

    Google Scholar 

  25. Gallaudet T, de Moustier C (2003) High-frequency volume and boundary acoustic backscatter fluctuations in shallowwater. J Acoust Soc Am 114(2):707–725

    Article  PubMed  Google Scholar 

  26. Sorensen K, Andersen S (2007) Rayleigh mixture model-based hidden markov modeling and estimation of noise in noisy speech signals. IEEE Trans Audio Speech Lang Process 15(3):901–917

    Article  Google Scholar 

  27. Ciompi F, Pujol O, Gatta C, Rodriguez O, Mauri F, Radeva P (2009) Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization. Int J Cardiovasc Imag (formerly cardiac imaging) 26(7):763–779. doi:10.1007/s10554-009-9543-1.

    Article  Google Scholar 

  28. Sehgal C (1993) Quantitative relationship between tissue composition and scattering of ultrasound. Acoust Soc Am J 94:1944–1952

    Article  CAS  Google Scholar 

  29. Hadley G (1964) Nonlinear and dynamic programming. Addison-Wesley, Reading

    Google Scholar 

  30. Harris JW, Stocker H (1998) Maximum likelihood method In: Handbook of mathematics and computational science. Springer, New York, p 824

    Book  Google Scholar 

  31. Caballero KL, Barajas J, Pujol O, Rodriguez O, Radeva P (2007) Using reconstructed ivus images for coronary plaque classification. In: Proceedings of IEEE international conference on engineering in medicine and biology, Cit Internationale, Lyon, France, pp 2167–2170

    Google Scholar 

  32. Rosales M, Radeva P (2005) A basic model for IVUS image simulation. In: Handbook of biomedical image analysis, Topics in biomedical engineering international book series. Springer, New York, pp 1–55

    Google Scholar 

  33. Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2:263–286

    Google Scholar 

  34. Schapire RE (1997) Using output codes to boost multiclass learning problems. In Proceedings of 14th international conference on machine learning. Morgan Kaufmann, CA, pp 313–321

    Google Scholar 

  35. Rennie J (2003) Boosting with decision stumps and binary features. Technical report, MIT, MA

    Google Scholar 

  36. Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience, NY

    Book  Google Scholar 

  37. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    Google Scholar 

  38. Schapire RE (2001) The boosting approach to machine learning: an overview. In: MSRI workshop on nonlinear estimation and classification. Berkeley, CA, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Seabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Seabra, J., Ciompi, F., Radeva, P., Sanches, J.M. (2012). A Rayleigh Mixture Model for IVUS Imaging. In: Sanches, J., Laine, A., Suri, J. (eds) Ultrasound Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1180-2_2

Download citation

Publish with us

Policies and ethics