Skip to main content

Notch Signaling in Lung Development and Disease

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

Notch signaling plays an essential role in development and homeostasis of multiple organs including the lung. Dysregulation of Notch signaling has been implicated in various lung diseases including lung cancer. Here we review functions of Notch signaling in coordinating events during lung development, such as early proximodistal fate generation and branching, airway epithelial cell fate specification, alveogenesis and pulmonary vascular development. We also discuss roles of Notch in chronic obstructive pulmonary disease, progressive pulmonary fibrosis, pulmonary arterial hypertension, asthma and lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sprinzak D, Lakhanpal A, Lebon L et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 2010; 465(7294):86–90.

    Article  PubMed  CAS  Google Scholar 

  2. Panin VM, Papayannopoulos V, Wilson R et al. Fringe modulates Notch-ligand interactions. Nature 1997; 387(6636):908–912.

    Article  PubMed  CAS  Google Scholar 

  3. Golson ML, Le Lay J, Gao N et al. Jagged1 is a competitive inhibitor of Notch signaling in the embryonic pancreas. Mech Dev 2009; 126(8–9):687–699.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen B, Bashirullah A, Dagnino L et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat Genet 1997; 16(3):283–288.

    Article  PubMed  CAS  Google Scholar 

  5. Tsao PN, Chen F, Izvolsky KI et al. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem 2008; 283(43):29532–29544.

    Article  PubMed  CAS  Google Scholar 

  6. Kong Y, Glickman J, Subramaniam M et al. Functional diversity of notch family genes in fetal lung development. Am J Physiol Lung Cell Mol Physiol 2004; 286(5):L1075–1083.

    Article  Google Scholar 

  7. Tompkins DH, Besnard V, Lange AW et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated and goblet cells. PLoS One 2009; 4(12):e8248.

    Article  Google Scholar 

  8. Que J, Luo X, Schwartz RJ et al. Multiple roles for Sox2 in the developing and adult mouse trachea. Development 2009; 136(11):1899–1907.

    Article  PubMed  CAS  Google Scholar 

  9. Tsao PN, Vasconcelos M, Izvolsky KI et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 2009; 136(13):2297–2307.

    Article  PubMed  CAS  Google Scholar 

  10. Rock JR, Onaitis MW, Rawlins EL et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 2009; 106(31):12771–12775.

    Article  PubMed  CAS  Google Scholar 

  11. Engelhardt JF, Schlossberg H, Yankaskas JR et al. Progenitor cells of the adult human airway involved in submucosal gland development. Development 1995; 121(7):2031–2046.

    PubMed  CAS  Google Scholar 

  12. Rawlins EL, Okubo T, Xue Y et al. The role of Scgb1a1??Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 2009; 4(6):525–534.

    Article  PubMed  CAS  Google Scholar 

  13. Ito T, Udaka N, Yazawa T et al. Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 2000; 127(18):3913–3921.

    PubMed  CAS  Google Scholar 

  14. Morimoto M, Liu Z, Cheng HT et al. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 2010; 123(Pt 2):213–224.

    Article  PubMed  CAS  Google Scholar 

  15. Guseh JS, Bores SA, Stanger BZ et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 2009; 136(10):1751–1759.

    Article  PubMed  CAS  Google Scholar 

  16. Borges M, Linnoila RI, van de Velde HJ et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 1997; 386(6627):852–855.

    Article  PubMed  CAS  Google Scholar 

  17. Chen H, Thiagalingam A, Chopra H et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA 1997; 94(10):5355–5360.

    Article  PubMed  CAS  Google Scholar 

  18. Sriuranpong V, Borges MW, Strock CL et al. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol Cell Biol 2002; 22(9):3129–3139.

    Article  PubMed  CAS  Google Scholar 

  19. Shan L, Aster JC, Sklar J et al. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice. Am J Physiol Lung Cell Mol Physiol 2007; 292(2):L500–509.

    Article  Google Scholar 

  20. Post LC, Ternet M, Hogan BL. Notch/Delta expression in the developing mouse lung. Mech Dev 2000; 98(1–2):95–98.

    Article  PubMed  CAS  Google Scholar 

  21. Xu K, Nieuwenhuis E, Cohen BL et al. Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. Am J Physiol Lung Cell Mol Physiol 2010; 298(1):L45–56.

    Article  Google Scholar 

  22. Niwa Y, Masamizu Y, Liu T et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev Cell 2007; 13(2):298–304.

    Article  PubMed  CAS  Google Scholar 

  23. Yoshiura S, Ohtsuka T, Takenaka Y et al. Ultradian oscillations of Stat, Smad and Hes1 expression in response to serum. Proc Natl Acad Sci USA 2007; 104(27):11292–11297.

    Article  PubMed  CAS  Google Scholar 

  24. Wong GT, Manfra D, Poulet FM et al. Chronic treatment with the gamma-secretase inhibitor LY-411, 575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279(13):12876–12882.

    Article  PubMed  CAS  Google Scholar 

  25. van Es JH, van Gijn ME, Riccio O et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435(7044):959–963.

    Article  PubMed  Google Scholar 

  26. Zecchini V, Domaschenz R, Winton D et al. Notch signaling regulates the differentiation of postmitotic intestinal epithelial cells. Genes Dev 2005; 19(14):1686–1691.

    Article  PubMed  CAS  Google Scholar 

  27. Dang TP, Eichenberger S, Gonzalez A et al. Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene 2003; 22(13):1988–1997.

    Article  PubMed  CAS  Google Scholar 

  28. Taichman DB, Loomes KM, Schachtner SK et al. Notch1 and Jagged1 expression by the developing pulmonary vasculature. Dev Dyn 2002; 225(2):166–175.

    Article  PubMed  CAS  Google Scholar 

  29. Ahmed Z, Bicknell R. Angiogenic signalling pathways. Methods Mol Biol 2009; 467:3–24.

    Article  PubMed  CAS  Google Scholar 

  30. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res 2009; 104(5):576–588.

    Article  PubMed  CAS  Google Scholar 

  31. Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch and transforming growth factor-beta in vascular morphogenesis. Circ Res 2008; 102(6):637–652.

    Article  PubMed  CAS  Google Scholar 

  32. Siekmann AF, Covassin L, Lawson ND. Modulation of VEGF signalling output by the Notch pathway. Bioessays 2008; 30(4):303–313.

    Article  PubMed  CAS  Google Scholar 

  33. Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling. Genes Dev 2007; 21(20):2511–2524.

    Article  PubMed  CAS  Google Scholar 

  34. Gridley T. Notch signaling in vascular development and physiology. Development 2007; 134(15):2709–2718.

    Article  PubMed  CAS  Google Scholar 

  35. Kalinichenko VV, Gusarova GA, Kim IM et al. Foxf1 haploinsufficiency reduces Notch-2 signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 2004; 286(3):L521–530.

    Article  Google Scholar 

  36. Domenga V, Fardoux P, Lacombe P et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 2004; 18(22):2730–2735.

    Article  PubMed  CAS  Google Scholar 

  37. Krebs LT, Xue Y, Norton CR et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 2003; 37(3):139–143.

    Article  PubMed  CAS  Google Scholar 

  38. Krebs LT, Xue Y, Norton CR et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000; 14(11):1343–1352.

    PubMed  CAS  Google Scholar 

  39. Miniati D, Jelin EB, Ng J et al. Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice. Am J Physiol Lung Cell Mol Physiol 2010; 298(2):L169–177.

    Article  Google Scholar 

  40. Tilley AE, Harvey BG, Heguy A et al. Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009; 179(6):457–466.

    Article  PubMed  CAS  Google Scholar 

  41. Noseda M, Fu Y, Niessen K et al. Smooth Muscle alpha-actin is a direct target of Notch/CSL. Circ Res 2006; 98(12):1468–1470.

    Article  PubMed  CAS  Google Scholar 

  42. Liu T, Hu B, Choi YY et al. Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol 2009; 174(5):1745–1755.

    Article  PubMed  CAS  Google Scholar 

  43. Li X, Zhang X, Leathers R et al. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 2009; 15(11):1289–1297.

    Article  PubMed  CAS  Google Scholar 

  44. Schaller MA, Neupane R, Rudd BD et al. Notch ligand Delta-like 4 regulates disease pathogenesis during respiratory viral infections by modulating Th2 cytokines. J Exp Med 2007; 204(12):2925–2934.

    Article  PubMed  CAS  Google Scholar 

  45. Ito T, Schaller M, Hogaboam CM et al. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J Clin Invest 2009; 119(1):33–46.

    PubMed  CAS  Google Scholar 

  46. Huang MT, Dai YS, Chou YB et al. Regulatory T-cells negatively regulate neovasculature of airway remodeling via DLL4-Notch signaling. J Immunol 2009; 183(7):4745–4754.

    Article  PubMed  CAS  Google Scholar 

  47. Okamoto M, Matsuda H, Joetham A et al. Jagged1 on dendritic cells and Notch on CD4??T-cells initiate lung allergic responsiveness by inducing IL-4 production. J Immunol 2009; 183(5):2995–3003.

    Article  PubMed  CAS  Google Scholar 

  48. Jiang T, Collins BJ, Jin N et al. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 2009; 69(3):845–854.

    Article  PubMed  CAS  Google Scholar 

  49. Osada H, Tatematsu Y, Yatabe Y et al. ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 2005; 65(23):10680–10685.

    Article  PubMed  CAS  Google Scholar 

  50. Sriuranpong V, Borges MW, Ravi RK et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61(7):3200–3205.

    PubMed  CAS  Google Scholar 

  51. Dang TP, Gazdar AF, Virmani AK et al. Chromosome 19 translocation, overexpression of Notch3 and human lung cancer. J Natl Cancer Inst 2000; 92(16):1355–1357.

    Article  PubMed  CAS  Google Scholar 

  52. Haruki N, Kawaguchi KS, Eichenberger S et al. Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Res 2005; 65(9):3555–3561.

    Article  PubMed  CAS  Google Scholar 

  53. Konishi J, Kawaguchi KS, Vo H et al. Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 2007; 67(17):8051–8057.

    Article  PubMed  CAS  Google Scholar 

  54. K onishi J, Yi F, Chen X et al. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene 2010; 29(4):589–596.

    Article  PubMed  CAS  Google Scholar 

  55. Gao SP, Mark KG, Leslie K et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007; 117(12):3846–3856.

    Article  PubMed  CAS  Google Scholar 

  56. Alvarez JV, Greulich H, Sellers WR et al. Signal transducer and activator of transcription 3 is required for the oncogenic effects of nonsmall-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res 2006; 66(6):3162–3168.

    Article  PubMed  CAS  Google Scholar 

  57. Sansone P, Storci G, Tavolari S et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117(12):3988–4002.

    Article  PubMed  CAS  Google Scholar 

  58. Westhoff B, Colaluca IN, D’Ario G et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA 2009; 106(52):22293–22298.

    Article  PubMed  CAS  Google Scholar 

  59. Chen DL, Dehdashti F. Advances in positron emission tomographic imaging of lung cancer. Proc Am Thorac Soc 2005; 2(6):541–544, 512.

    Article  PubMed  CAS  Google Scholar 

  60. Chen Y, De Marco MA, Graziani I et al. Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res 2007; 67(17):7954–7959.

    Article  PubMed  CAS  Google Scholar 

  61. Eliasz S, Liang S, Chen Y et al. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene 2010; 29(17):2488–2498.

    Article  PubMed  CAS  Google Scholar 

  62. Gustafsson MV, Zheng X, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5):617–628.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean E. Egan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Xu, K., Moghal, N., Egan, S.E. (2012). Notch Signaling in Lung Development and Disease. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_7

Download citation

Publish with us

Policies and ethics