Skip to main content

Notch Signaling and Breast Cancer

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

It has been more than two decades since Notch has been identified as an oncogene in mouse mammary tumor virus-infected mice. Since this discovery, activated Notch signaling and up-regulation of tumor-promoting Notch target genes have been observed in human breast cancer. In addition, high expression of Notch ligands and receptors has been shown to correlate with poor outcome in this malignancy. Notch affects multiple cellular processes including stem cell maintenance, cell fate specification, differentiation, proliferation, motility and survival. Perturbation of these activities is a hallmark of carcinogenesis and evidence continues to accumulate that aberrant Notch activity influences breast cancer progression through these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society. Cancer facts and figures. http://www.cancer.org/Research/CancerFactsFigures/index.

    Google Scholar 

  2. Gallahan D, Callahan R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 1987; 61(1):66–74.

    PubMed  CAS  Google Scholar 

  3. Gallahan D, Kozak C, Callahan R. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 1987; 61(1):218–220.

    PubMed  CAS  Google Scholar 

  4. Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999; 18(44):5973–5981.

    PubMed  CAS  Google Scholar 

  5. Bouchard L, Lamarre L, Tremblay PJ et al. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 1989; 57(6):931–936.

    PubMed  CAS  Google Scholar 

  6. Jhappan C, Gallahan D, Stahle C et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992; 6(3):345–355.

    PubMed  CAS  Google Scholar 

  7. Smith GH, Gallahan D, Diella F et al. Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ 1995; 6(5):563–577.

    PubMed  CAS  Google Scholar 

  8. Gallahan D, Jhappan C, Robinson G et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996; 56(8):1775–1785.

    PubMed  CAS  Google Scholar 

  9. Hu C, Dievart A, Lupien M et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 2006; 168(3):973–990.

    PubMed  CAS  Google Scholar 

  10. Kiaris H, Politi K, Grimm LM et al. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 2004; 165(2):695–705.

    PubMed  CAS  Google Scholar 

  11. Imatani A, Callahan R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 2000; 19(2):223–231.

    PubMed  CAS  Google Scholar 

  12. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res 2006; 66(3):1517–1525.

    PubMed  CAS  Google Scholar 

  13. Weijzen S, Rizzo P, Braid M et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002; 8(9):979–986.

    PubMed  CAS  Google Scholar 

  14. Weng AP, Ferrando AA, Lee W et al. Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science 2004; 306(5694):269–271.

    PubMed  CAS  Google Scholar 

  15. Lee SH, Jeong EG, Yoo NJ et al. Mutational analysis of NOTCH1, 2, 3 and 4 genes in common solid cancers and acute leukemias. Apmis 2007; 115(12):1357–1363.

    PubMed  CAS  Google Scholar 

  16. Reedijk M, Odorcic S, Chang L et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005; 65(18):8530–8537.

    PubMed  CAS  Google Scholar 

  17. Dickson BC, Mulligan AM, Zhang H et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 2007; 20(6):685–693.

    PubMed  CAS  Google Scholar 

  18. Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 2004; 14(5):779–786.

    PubMed  CAS  Google Scholar 

  19. Reedijk M, Pinnaduwage D, Dickson BC et al. JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res Treat 2008; 111(3):439–448.

    PubMed  CAS  Google Scholar 

  20. Farnie G, Clarke RB, Spence K et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 2007; 99(8):616–627.

    PubMed  CAS  Google Scholar 

  21. Andre F, Job B, Dessen P et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 2009; 15(2):441–451.

    PubMed  CAS  Google Scholar 

  22. Yamaguchi N, Oyama T, Ito E et al. NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res 2008; 68(6):1881–1888.

    PubMed  CAS  Google Scholar 

  23. Fitzgerald K, Harrington A, Leder P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000; 19(37):4191–4198.

    PubMed  CAS  Google Scholar 

  24. Sansone P, Storci G, Giovannini C et al p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 2007; 25(3):807–815.

    PubMed  CAS  Google Scholar 

  25. Sansone P, Storci G, Tavolari S et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117(12):3988–4002.

    PubMed  CAS  Google Scholar 

  26. Ayyanan A, Civenni G, Ciarloni L et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 2006; 103(10):3799–3804.

    PubMed  CAS  Google Scholar 

  27. Foltz DR, Santiago MC, Berechid BE et al. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol 2002; 12(12):1006–1011.

    PubMed  CAS  Google Scholar 

  28. Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16(4):509–520.

    PubMed  CAS  Google Scholar 

  29. Jehn BM, Dittert I, Beyer S et al. c-Cbl binding and ubiquitin-dependent lysosomal degradation of membrane-associated Notch1. J Biol Chem 2002; 277(10):8033–8040.

    PubMed  CAS  Google Scholar 

  30. McGill MA, McGlade CJ. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 2003; 278(25):23196–23203.

    PubMed  CAS  Google Scholar 

  31. Mukherjee A, Veraksa A, Bauer A et al. Regulation of Notch signalling by nonvisual beta-arrestin. Nat Cell Biol 2005; 7(12):1191–1201.

    PubMed  Google Scholar 

  32. Oberg C, Li J, Pauley A et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001; 276(38):35847–35853.

    PubMed  CAS  Google Scholar 

  33. Pece S, Serresi M, Santolini E et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 2004; 167(2):215–221.

    PubMed  CAS  Google Scholar 

  34. Colaluca IN, Tosoni D, Nuciforo P et al. NUMB controls p53 tumour suppressor activity. Nature 2008; 451(7174):76–80.

    PubMed  CAS  Google Scholar 

  35. Rustighi A, Tiberi L, Soldano A et al. The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 2009; 11(2):133–142.

    PubMed  CAS  Google Scholar 

  36. Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 2007; 8(11):904–916.

    PubMed  CAS  Google Scholar 

  37. Lange CS, Gilbert CW. Studies on the cellular basis of radiation lethality. 3. The measurement of stem-cell repopulation probability. Int J Radiat Biol Relat Stud Phys Chem Med 1968; 14(4):373–388.

    PubMed  CAS  Google Scholar 

  38. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7):730–737.

    PubMed  CAS  Google Scholar 

  39. Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7):3983–3988.

    PubMed  CAS  Google Scholar 

  40. Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64(19):7011–7021.

    PubMed  CAS  Google Scholar 

  41. Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18):5821–5828.

    PubMed  CAS  Google Scholar 

  42. Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015):396–401.

    PubMed  CAS  Google Scholar 

  43. O’Brien CA, Pollett A, Gallinger S et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445(7123):106–110.

    PubMed  Google Scholar 

  44. Collins AT, Berry PA, Hyde C et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65(23):10946–10951.

    PubMed  CAS  Google Scholar 

  45. Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65(20):9328–9337.

    PubMed  CAS  Google Scholar 

  46. Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3):1030–1037.

    PubMed  CAS  Google Scholar 

  47. Prince ME, Sivanandan R, Kaczorowski A et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104(3):973–978.

    PubMed  CAS  Google Scholar 

  48. Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1(5):555–567.

    PubMed  CAS  Google Scholar 

  49. Dontu G, Jackson KW, McNicholas E et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004; 6(6):R605–615.

    PubMed  CAS  Google Scholar 

  50. Dontu G, Abdallah WM, Foley JM et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17(10):1253–1270.

    PubMed  CAS  Google Scholar 

  51. Bouras T, Pal B, Vaillant F et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3(4):429–441.

    PubMed  CAS  Google Scholar 

  52. Shackleton M, Vaillant F, Simpson KJ et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439(7072):84–88.

    PubMed  CAS  Google Scholar 

  53. Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65(13):5506–5511.

    PubMed  CAS  Google Scholar 

  54. Korkaya H, Wicha MS. HER-2, notch and breast cancer stem cells: targeting an axis of evil. Clin Cancer Res 2009; 15(6):1845–1847.

    PubMed  CAS  Google Scholar 

  55. Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006; 580(12):2860–2868.

    PubMed  CAS  Google Scholar 

  56. van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 2005; 11(11):496–502.

    PubMed  Google Scholar 

  57. Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007; 13(15 Pt 1):4429–4434.

    PubMed  Google Scholar 

  58. Lee CW, Simin K, Liu Q et al. A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 2008; 10(6):R97.

    PubMed  Google Scholar 

  59. Lee CW, Raskett CM, Prudovsky I et al. Molecular dependence of estrogen receptor-negative breast cancer on a notch-survivin signaling axis. Cancer Res 2008; 68(13):5273–5281.

    PubMed  CAS  Google Scholar 

  60. Bane AL, Pinnaduwage D, Colby S et al. Expression profiling of familial breast cancers demonstrates higher expression of FGFR2 in BRCA2-associated tumors. Breast Cancer Res Treat 2008.

    Google Scholar 

  61. Cohen B, Shimizu M, Izrailit J et al. Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat 2010; 123(1):113–124.

    PubMed  CAS  Google Scholar 

  62. Rizzo P, Miao H, D’souza G et al. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 2008; 68(13):5226–5235.

    PubMed  CAS  Google Scholar 

  63. Osipo C, Patel P, Rizzo P et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene. 2008; 27(37):5019–5032.

    PubMed  CAS  Google Scholar 

  64. Radtke F, Wilson A, Stark G et al. Deficient T-cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10(5):547–558.

    PubMed  CAS  Google Scholar 

  65. Buono KD, Robinson GW, Martin C et al. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 2006; 293(2):565–580.

    PubMed  CAS  Google Scholar 

  66. Raouf A, Zhao Y, To K et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008; 3(1):109–118.

    PubMed  CAS  Google Scholar 

  67. Lim E, Vaillant F, Wu D et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15(8):907–913.

    PubMed  CAS  Google Scholar 

  68. Klinakis A, Szabolcs M, Politi K et al. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 2006; 103(24):9262–9267.

    PubMed  CAS  Google Scholar 

  69. Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005; 23(18):4215–4224.

    PubMed  CAS  Google Scholar 

  70. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13(12):1501–1512.

    PubMed  CAS  Google Scholar 

  71. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21(17):5925–5934.

    PubMed  CAS  Google Scholar 

  72. Stahl M, Ge C, Shi S et al. Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1. Cancer Res 2006; 66(15):7562–7570.

    Google Scholar 

  73. Rowan S, Conley KW, Le TT et al. Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 2008; 321(1):111–122.

    PubMed  CAS  Google Scholar 

  74. Campa VM, Gutierrez-Lanza R, Cerignoli F et al. Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 2008; 183(1):129–141.

    PubMed  CAS  Google Scholar 

  75. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001; 411(6841):1017–1021.

    PubMed  CAS  Google Scholar 

  76. Meurette O, Stylianou S, Rock R et al. Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res 2009; 69(12):5015–5022.

    PubMed  CAS  Google Scholar 

  77. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 2008; 8(1):61–70.

    PubMed  CAS  Google Scholar 

  78. Timmerman LA, Grego-Bessa J, Raya A et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 2004; 18(1):99–115.

    PubMed  CAS  Google Scholar 

  79. Vincent-Salomon A, Thiery JP. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 2003; 5(2):101–106.

    PubMed  CAS  Google Scholar 

  80. Leong KG, Niessen K, Kulic I et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 2007; 204(12):2935–2948.

    PubMed  CAS  Google Scholar 

  81. Martin TA, Goyal A, Watkins G et al. Expression of the transcription factors snail, slug and twist and their clinical significance in human breast cancer. Ann Surg Oncol 2005; 12(6):488–496.

    PubMed  Google Scholar 

  82. Noguera-Troise I, Daly C, Papadopoulos NJ et al. Blockade of Dll4 inhibits tumour growth by promoting nonproductive angiogenesis. Nature 2006; 444(7122):1032–1037.

    PubMed  CAS  Google Scholar 

  83. Mailhos C, Modlich U, Lewis J et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 2001; 69(2–3):135–144.

    PubMed  CAS  Google Scholar 

  84. Zeng Q, Li S, Chepeha DB et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005; 8(1):13–23.

    PubMed  CAS  Google Scholar 

  85. Soares R, Balogh G, Guo S et al. Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 2004; 18(9):2333–2343.

    PubMed  CAS  Google Scholar 

  86. Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004; 9(2):145–163.

    PubMed  Google Scholar 

  87. Hao L, Rizzo P, Osipo C et al. Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. Oncogene 29(2):201–213.

    Google Scholar 

  88. Jahanzeb M. Adjuvant trastuzumab therapy for HER2-positive breast cancer. Clin Breast Cancer 2008; 8(4):324–333.

    PubMed  CAS  Google Scholar 

  89. Cobleigh MA, Vogel CL, Tripathy D et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17(9):2639–2648.

    PubMed  CAS  Google Scholar 

  90. Vogel CL, Cobleigh MA, Tripathy D et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20(3):719–726.

    PubMed  CAS  Google Scholar 

  91. Chen Y, Fischer WH, Gill GN. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem 1997; 272(22):14110–14114.

    PubMed  CAS  Google Scholar 

  92. Shih Ie M, Wang TL. Notch signaling, gamma-secretase inhibitors and cancer therapy. Cancer Res 2007; 67(5):1879–1882.

    Google Scholar 

  93. Kopan R, Goate A. A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev 2000; 14(22):2799–2806.

    PubMed  CAS  Google Scholar 

  94. Konishi J, Kawaguchi KS, Vo H et al. Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 2007; 67(17):8051–8057.

    PubMed  CAS  Google Scholar 

  95. Qin JZ, Stennett L, Bacon P et al p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol Cancer Ther 2004; 3(8):895–902.

    PubMed  CAS  Google Scholar 

  96. Rao SS, O’Neil J, Liberator CD et al. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res 2009; 69(7):3060–3068.

    PubMed  CAS  Google Scholar 

  97. O’Neill CF, Urs S, Cinelli C et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol 2007; 171(3):1023–1036.

    CAS  Google Scholar 

  98. Mittal S, Subramanyam D, Dey D et al. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 2009; 8:128.

    PubMed  Google Scholar 

  99. Watters JW, Cheng C, Majumder PK et al. De novo discovery of a gamma-secretase inhibitor response signature using a novel in vivo breast tumor model. Cancer Res 2009; 69(23):8949–8957.

    PubMed  CAS  Google Scholar 

  100. Radtke F, Clevers H, Riccio O. From gut homeostasis to cancer. Curr Mol Med 2006; 6(3):275–289.

    PubMed  CAS  Google Scholar 

  101. Barten DM, Meredith JE Jr, Zaczek R et al. Gamma-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R D 2006; 7(2):87–97.

    PubMed  CAS  Google Scholar 

  102. Lammich S, Okochi M, Takeda M et al. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J Biol Chem 2002; 277(47):44754–44759.

    PubMed  CAS  Google Scholar 

  103. Marambaud P, Shioi J, Serban G et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 2002; 21(8):1948–1956.

    PubMed  CAS  Google Scholar 

  104. Ni CY, Murphy MP, Golde TE et al. gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 2001; 294(5549):2179–2181.

    PubMed  CAS  Google Scholar 

  105. Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003; 22(42):6598–6608.

    PubMed  CAS  Google Scholar 

  106. Krop IE, Kosh M, Fearen I et al. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) trial of the novel oral Notch inhibitor MK-0752 in patients (pts) with advanced breast cancer (BC) and other solid tumors. J Clin Oncol 2006; 24(18S):10574.

    Google Scholar 

  107. Albain K. A pilot study of MK-0752 in combination with tamoxifen or letrozole in patients with early stage breast cancer prior to surgery. http://clinicaltrials.gov/ct2/show/NCT00756717.

    Google Scholar 

  108. Tolcher AW, Mikulski SM, WA M et al. A phase I study of R04929097, a novel gamma secretase inhibitior, in patients with advanced soli tumors. J Clin Oncol 2010; 28(15S): 2502

    Google Scholar 

  109. LoRusso PM. A phase I dose-excalation study of the Hedgehog Smoothened antagonist GDC-0449 (NSC# 747691) plus pan-Notch Inhibitor RO4929097 (NSC# 749225) administered in patients with advanced breast cancer http://clinicaltrials.gov/ct2/show/NCT01071564.

    Google Scholar 

  110. Lawson ND, Vogel AM, Weinstein BM. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Developmental cell 2002; 3(1):127–136.

    PubMed  CAS  Google Scholar 

  111. Nickoloff BJ, Qin JZ, Chaturvedi V et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 2002; 9(8):842–855.

    PubMed  CAS  Google Scholar 

  112. Moss ML, Stoeck A, Yan W et al. ADAM10 as a target for anti-cancer therapy. Curr Pharm Biotechnol 2008; 9(1):2–8.

    PubMed  CAS  Google Scholar 

  113. Hokaiwado N, Takeshita F, Banas A et al. RNAi-based drug discovery and its application to therapeutics. IDrugs 2008; 11(4):274–278.

    PubMed  Google Scholar 

  114. Ma J, Meng Y, Kwiatkowski DJ et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 120(1):103–114.

    Google Scholar 

  115. Ridgway J, Zhang G, Wu Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444(7122):1083–1087.

    PubMed  CAS  Google Scholar 

  116. Hoey T, Yen WC, Axelrod F et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 2009; 5(2):168–177.

    PubMed  CAS  Google Scholar 

  117. Yan M, Callahan CA, Beyer JC et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463(7282):E6–7.

    Google Scholar 

  118. Antonio J, Chiorean EG, LoRusso P. A Phase 1, multiple-dose study of the safety and tolerability of single-agent REGN421 administered every 2 or 3 weeks in patients with advanced solid malignancies. http://clinicaltrials.gov/ct2/show/NCT00871559.

    Google Scholar 

  119. Eisenberg P, Talpaz, M. A phase 1 dose escalation study of OMP-21M18 in subjects with solid tumors. http://clinicaltrials.gov/ct2/show/NCT00744562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Reedijk, M. (2012). Notch Signaling and Breast Cancer. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_18

Download citation

Publish with us

Policies and ethics