Skip to main content

Notch Signaling and the Developing Inner Ear

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

Sensory hair cells (HCs) and their associated nonsensory supporting cells (SCs) exhibit a typical mosaic pattern in each of the sensory patches in the inner ear. Notch signaling has been considered to conduct the formation of this mosaic pattern through one of its famous functions, known as ‘lateral inhibition’. The two Notch ligands Delta-like1 and Jagged2 are believed to act synergistically at the stage of cell diversification in mammals. In addition, many current studies suggest that Notch signaling has another inductive, but not inhibiting, role in the determination of the prosensory region, which precedes the cell diversification of HCs and SCs and Jagged1 is thought to be an essential ligand in this process. Earlier in ear development, the first cell fate determination begins with the delamination of the neuroblasts from the otic epithelium. The delaminated neuroblasts migrate and coalesce to form cochleovestibular ganglion. Notch signaling pathway is thought to function during the delamination through its lateral inhibitory mechanism. Recently, many experiments examining Notch-related gene expression patterns and direct functional analyses of genes have revealed multiple important functions of Notch in inner ear development. Here, we survey a series of studies and discuss the issues that remain to be elucidated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forge A, Li L, Corwin JT et al. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 1993; 259(5101):1616–1619.

    Article  PubMed  CAS  Google Scholar 

  2. Warchol ME, Lambert PR, Goldstein BJ et al. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 1993; 259(5101):1619–1622.

    Article  PubMed  CAS  Google Scholar 

  3. Barald KF, Kelley MW. From placode to polarization: new tunes in inner ear development. Development 2004; 131(17):4119–4130.

    Article  PubMed  CAS  Google Scholar 

  4. Carney PR, Silver J. Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. J Comp Neurol 1983; 215(4):359–369.

    Article  PubMed  CAS  Google Scholar 

  5. Adam J, Myat A, Le Roux I et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 1998; 125(23):4645–4654.

    PubMed  CAS  Google Scholar 

  6. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 2002; 25:51–101.

    Article  PubMed  CAS  Google Scholar 

  7. Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 2006; 7(11):837–849.

    Article  PubMed  CAS  Google Scholar 

  8. Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol 1967; Suppl 220:221–244.

    Google Scholar 

  9. Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999; 126(8):1581–1590.

    PubMed  CAS  Google Scholar 

  10. Lowenheim H, Furness DN, Kil J et al. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci USA 1999; 96(7):4084–4088.

    Article  PubMed  CAS  Google Scholar 

  11. Chen P, Zindy F, Abdala C et al. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d. Nat Cell Biol 2003; 5(5):422–426.

    Article  PubMed  CAS  Google Scholar 

  12. Chen P, Johnson JE, Zoghbi HY et al. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002; 129(10):2495–2505.

    PubMed  CAS  Google Scholar 

  13. Bermingham NA, Hassan BA, Price SD et al. Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284(5421):1837–1841.

    Article  PubMed  CAS  Google Scholar 

  14. Jones JM, Montcouquiol M, Dabdoub A et al. Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 2006; 26(2):550–558.

    Article  PubMed  CAS  Google Scholar 

  15. Izumikawa M, Minoda R, Kawamoto K et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11(3):271–276.

    Article  PubMed  CAS  Google Scholar 

  16. Murata J, Tokunaga A, Okano H et al. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J Comp Neurol 2006; 497(3):502–518.

    Article  PubMed  CAS  Google Scholar 

  17. Bray S. Notch signalling in Drosophila: three ways to use a pathway. Semin Cell Dev Biol 1998; 9(6):591–597.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 1998; 9(6):583–589.

    Article  PubMed  CAS  Google Scholar 

  19. Lai EC. Notch signaling: control of cell communication and cell fate. Development 2004; 131(5):965–973.

    Article  PubMed  CAS  Google Scholar 

  20. Fekete DM, Muthukumar S, Karagogeos D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 1998; 18(19):7811–7821.

    PubMed  CAS  Google Scholar 

  21. Lanford PJ, Lan Y, Jiang R et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999; 21(3):289–292.

    Article  PubMed  CAS  Google Scholar 

  22. Morrison A, Hodgetts C, Gossler A et al. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev 1999; 84(1–2):169–172.

    Article  PubMed  CAS  Google Scholar 

  23. Zine A, Van De Water TR, de Ribaupierre F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 2000; 127(15):3373–3383.

    PubMed  CAS  Google Scholar 

  24. Murata J, Ohtsuka T, Tokunaga A et al. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res 2009; 87(16):3521–3534.

    Article  PubMed  CAS  Google Scholar 

  25. Ohtsuka T, Ishibashi M, Gradwohl G et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 1999; 18(8):2196–2207.

    Article  PubMed  CAS  Google Scholar 

  26. Zheng JL, Shou J, Guillemot F et al. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 2000; 127(21):4551–4560.

    PubMed  CAS  Google Scholar 

  27. K iernan AE, Cordes R, Kopan R et al. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 2005; 132(19):4353–4362.

    Article  Google Scholar 

  28. Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133(7):1277–1286.

    Article  PubMed  CAS  Google Scholar 

  29. Bruckner K, Perez L, Clausen H et al. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000; 406(6794):411–415.

    Article  PubMed  CAS  Google Scholar 

  30. Moloney DJ, Panin VM, Johnston SH et al. Fringe is a glycosyltransferase that modifies Notch. Nature 2000; 406(6794):369–375.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis AK, Frantz GD, Carpenter DA et al. Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech Dev 1998; 78(1–2):159–163.

    Article  PubMed  CAS  Google Scholar 

  32. Cole LK, Le Roux I, Nunes F et al. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1 and lunatic fringe. J Comp Neurol 2000; 424(3):509–520.

    Article  PubMed  CAS  Google Scholar 

  33. Tsai H, Hardisty RE, Rhodes C et al. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 2001; 10(5):507–512.

    Article  PubMed  CAS  Google Scholar 

  34. Kiernan AE, Ahituv N, Fuchs H et al. The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci USA 2001; 98(7):3873–3878.

    Article  PubMed  CAS  Google Scholar 

  35. Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006; 2(1):e4.

    Article  PubMed  Google Scholar 

  36. Hayashi T, Kokubo H, Hartman BH et al. Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev Biol 2008; 316(1):87–99.

    Article  PubMed  CAS  Google Scholar 

  37. Dabdoub A, Puligilla C, Jones JM et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci USA 2008; 105(47):18396–18401.

    Article  PubMed  CAS  Google Scholar 

  38. Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 2005; 132(3):541–551.

    Article  PubMed  CAS  Google Scholar 

  39. Eddison M, Le Roux I, Lewis J. Notch signaling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 2000; 97(22):11692–11699.

    Article  PubMed  CAS  Google Scholar 

  40. Hartman BH, Reh TA, Bermingham-McDonogh O. Notch signaling specifies prosensory domains via lateral induction in mammalian inner ear. Proc Natl Acad Sci USA 2010; 107(36):15792–15797

    Article  PubMed  CAS  Google Scholar 

  41. Pan W, Jim Y, Stanger B, Kierman AE. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci USA 2010; 107(36):15798–15803

    Article  PubMed  CAS  Google Scholar 

  42. Li S, Mark S, Radde-Gallwitz K et al. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development. BMC Dev Biol 2008; 8:20.

    Article  PubMed  CAS  Google Scholar 

  43. Murata K, Hattori M, Hirai N et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 2005; 25(10):4262–4271.

    Article  PubMed  CAS  Google Scholar 

  44. Uchikawa M, Kamachi Y, Kondoh H. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech Dev 1999; 84(1–2):103–120.

    Article  PubMed  CAS  Google Scholar 

  45. Lefebvre V, Dumitriu B, Penzo-Mendez A et al. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 2007; 39(12):2195–2214.

    Article  Google Scholar 

  46. Kiernan AE, Pelling AL, Leung KK et al. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 2005; 434(7036):1031–1035.

    Article  PubMed  CAS  Google Scholar 

  47. Takebayashi S, Yamamoto N, Yabe D et al. Multiple roles of Notch signaling in cochlear development. Dev Biol 2007; 307(1):165–178.

    Article  PubMed  CAS  Google Scholar 

  48. Guentchev M, McKay RD. Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 2006; 23(9):2289–2296.

    Article  PubMed  Google Scholar 

  49. Tokunaga A, Kohyama J, Yoshida T et al. Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J Neurochem 2004; 906(1):142–154.

    Article  Google Scholar 

  50. Ma Q, Chen Z, del Barco Barrantes I et al. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 1998; 20(3):469–482.

    Article  PubMed  CAS  Google Scholar 

  51. Ma Q, Anderson DJ, Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 2000; 1(2):129–143.

    Article  PubMed  CAS  Google Scholar 

  52. Liu M, Pereira FA, Price SD et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 2000; 14(22):2839–2854.

    Article  PubMed  CAS  Google Scholar 

  53. Haddon C, Jiang YJ, Smithers L et al. Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 1998; 125(23):4637–4644.

    PubMed  CAS  Google Scholar 

  54. Pan W, Jin Y, Stanger B, Kiernan AE. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci USA 2010; 107(36):15798–15803.

    Article  PubMed  CAS  Google Scholar 

  55. Satoh T, Fekete DM. Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development 2005; 132(7):1687–1697.

    Article  PubMed  CAS  Google Scholar 

  56. Raft S, Koundakjian EJ, Quinones H et al. Cross-regulation of Ngn1 and Math1 co-ordinates the production of neurons and sensory hair cells during inner ear development. Development 2007; 134(24):4405–4415.

    Article  PubMed  CAS  Google Scholar 

  57. Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 2007; 51(6–7):633–647.

    Article  PubMed  CAS  Google Scholar 

  58. Adler HJ, Raphael Y. New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 1996; 205(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  59. Roberson DW, Alosi JA, Cotanche DA. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J Neurosci Res 2004; 78(4):461–471.

    Article  PubMed  CAS  Google Scholar 

  60. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science 1988; 240(4860):1772–1774.

    Article  PubMed  CAS  Google Scholar 

  61. Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 1988; 240(4860):1774–1776.

    Article  PubMed  CAS  Google Scholar 

  62. Ma EY, Rubel EW, Raible DW. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 2008; 28(9):2261–2273.

    Article  PubMed  CAS  Google Scholar 

  63. Daudet N, Gibson R, Shang J et al. Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev Biol 2009; 326(1):86–100.

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto N, Tanigaki K, Tsuji M et al. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med 2006; 84(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  65. Hori R, Nakagawa T, Sakamoto T et al. Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea. Neuroreport 2007; 18(18):1911–1914.

    Article  PubMed  CAS  Google Scholar 

  66. Morsli H, Choo D, Ryan A, Johnson R et al. Development of the mouse inner ear and origin of its sensory organs. J Neurosci 1998; 18(9):3327–3335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Murata, J., Ikeda, K., Okano, H. (2012). Notch Signaling and the Developing Inner Ear. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_12

Download citation

Publish with us

Policies and ethics