Skip to main content

Receptor Mediated Delivery Systems for Cancer Therapeutics

  • Chapter
  • First Online:
Fundamentals and Applications of Controlled Release Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Directing anticancer agents specifically to tumors and/or cancer cells by targeting specific extracellular receptors fulfills the following three most important tasks: (1) preventing or at least substantially limiting adverse side effects on healthy tissues; (2) enhancing drug internalization by cancer cells; and (3) overcoming (at least in part) resistance mechanisms that are based on the active efflux of exogenous drugs from cancer cells. This review is focused on the last decade of accomplishments in the field of cancer-targeted drug delivery and describes different approaches to receptor-targeted delivery of anticancer agents. Mechanisms of receptor mediated endocytosis, targeting folate, carbohydrate (lactose, galactosamine, ascorbic acid, hyaluronic acid), peptide, and protein (somatostatin, growth factor, tissue factor, integrin, transferrin, vitamin, and luteinizing hormone-releasing hormone) receptors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrlich P (1906) Studies in immunity. Plenium Press, New York

    Google Scholar 

  2. Minko T, Dharap SS, Pakunlu RI, Wang Y (2004) Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 5(4):389–406

    Article  PubMed  CAS  Google Scholar 

  3. Vyas SP, Singh A, Sihorkar V (2001) Ligand-receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting. Crit Rev Ther Drug Carrier Syst 18(1):1–76

    PubMed  CAS  Google Scholar 

  4. Minko T (2004) Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 56(4):491–509

    Article  PubMed  CAS  Google Scholar 

  5. De Paoli P (2008) Novel virally targeted therapies of EBV-associated tumors. Curr Cancer Drug Targets 8(7):591–596

    PubMed  Google Scholar 

  6. Kuo WT, Huang HY, Huang YY (2009) Intracellular trafficking, metabolism and toxicity of current gene carriers. Curr Drug Metab 10(8):885–894

    Article  PubMed  CAS  Google Scholar 

  7. Roy P, Noad R (2009) Virus-like particles as a vaccine delivery system: myths and facts. Adv Exp Med Biol 655:145–158

    Article  PubMed  CAS  Google Scholar 

  8. Pakunlu RI, Cook TJ, Minko T (2003) Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm Res 20(3):351–359

    Article  PubMed  CAS  Google Scholar 

  9. Pakunlu RI, Wang Y, Tsao W, Pozharov V, Cook TJ, Minko T (2004) Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense: novel multicomponent delivery system. Cancer Res 64(17):6214–6224

    Article  PubMed  CAS  Google Scholar 

  10. Szakacs G, Jakab K, Antal F, Sarkadi B (1998) Diagnostics of multidrug resistance in cancer. Pathol Oncol Res 4(4):251–257

    Article  PubMed  CAS  Google Scholar 

  11. Minko T, Kopeckova P, Kopecek J (1999) Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells. Pharm Res 16(7):986–996

    Article  PubMed  CAS  Google Scholar 

  12. Harashima H, Shinohara Y, Kiwada H (2001) Intracellular control of gene trafficking using liposomes as drug carriers. Eur J Pharm Sci 13(1):85–89

    Article  PubMed  CAS  Google Scholar 

  13. Luzio JP, Parkinson MD, Gray SR, Bright NA (2009) The delivery of endocytosed cargo to lysosomes. Biochem Soc Trans 37(Pt 5):1019–1021

    Article  PubMed  CAS  Google Scholar 

  14. Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3(8):600–614

    Article  PubMed  CAS  Google Scholar 

  15. Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    Article  PubMed  CAS  Google Scholar 

  16. Torchilin VP, Khaw BA, Weissig V (2002) Intracellular targets for DNA delivery: nuclei and mitochondria. Somat Cell Mol Genet 27(1–6):49–64

    Article  PubMed  CAS  Google Scholar 

  17. Beh CW, Seow WY, Wang Y, Zhang Y, Ong ZY, Ee PL, Yang YY (2009) Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug. Biomacromolecules 10(1):41–48

    Article  PubMed  CAS  Google Scholar 

  18. Cuchelkar V, Kopeckova P, Kopecek J (2008) Synthesis and biological evaluation of disulfide-linked HPMA copolymer-mesochlorin e6 conjugates. Macromol Biosci 8(5):375–383

    Article  PubMed  CAS  Google Scholar 

  19. Banerjee SS, Chen DH (2008) Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 19(50):505104

    Article  PubMed  Google Scholar 

  20. Kale AA, Torchilin VP (2010) Environment-responsive multifunctional liposomes. Methods Mol Biol 605:213–242

    Article  PubMed  CAS  Google Scholar 

  21. Kasuya Y, Lu ZR, Kopeckova P, Minko T, Tabibi SE, Kopecek J (2001) Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates. J Control Release 74(1–3):203–211

    Article  PubMed  CAS  Google Scholar 

  22. Kasuya Y, Lu ZR, Kopeckova P, Tabibi SE, Kopecek J (2002) Influence of the structure of drug moieties on the in vitro efficacy of HPMA copolymer-geldanamycin derivative conjugates. Pharm Res 19(2):115–123

    Article  PubMed  CAS  Google Scholar 

  23. Khandare J, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Progr Polym Sci 31:359–397

    Article  CAS  Google Scholar 

  24. Minko T, Khandare JJ, Jayant S (2007) Polymeric drugs. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: from precise macromolecular synthesis to macroscopic material properties and application. WILEY-VCH Verlag GmbH & Co, Weinheim, pp 2541–2595

    Google Scholar 

  25. Khandare JJ, Chandna P, Wang Y, Pozharov VP, Minko T (2006) Novel polymeric prodrug with multivalent components for cancer therapy. J Pharmacol Exp Ther 317(3):929–937

    Article  PubMed  CAS  Google Scholar 

  26. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581–593

    Article  PubMed  CAS  Google Scholar 

  27. Kelemen LE (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250

    Article  PubMed  CAS  Google Scholar 

  28. Basal E, Eghbali-Fatourechi GZ, Kalli KR, Hartmann LC, Goodman KM, Goode EL, Kamen BA, Low PS, Knutson KL (2009) Functional folate receptor alpha is elevated in the blood of ovarian cancer patients. PLoS One 4(7):e6292

    Article  PubMed  Google Scholar 

  29. Yuan Y, Nymoen DA, Dong HP, Bjorang O, Shih M, Ie PS, Low CG, Low Trope CG, Davidson B (2009) Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol 40(10):1453–1460

    Article  PubMed  CAS  Google Scholar 

  30. Corona G, Giannini F, Fabris M, Toffoli G, Boiocchi M (1998) Role of folate receptor and reduced folate carrier in the transport of 5-methyltetrahydrofolic acid in human ovarian carcinoma cells. Int J Cancer 75(1):125–133

    Article  PubMed  CAS  Google Scholar 

  31. Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265

    Article  PubMed  CAS  Google Scholar 

  32. Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 88(13):5572–5576

    Article  PubMed  CAS  Google Scholar 

  33. Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53(19):6811–6824

    Article  PubMed  CAS  Google Scholar 

  34. Atkinson SF, Bettinger T, Seymour LW, Behr JP, Ward CM (2001) Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells. J Biol Chem 276(30):27930–27935

    Article  PubMed  CAS  Google Scholar 

  35. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100(2):247–256

    Article  PubMed  CAS  Google Scholar 

  36. Kim YK, Choi JY, Yoo MK, Jiang HL, Arote R, Je YH, Cho MH, Cho CS (2007) Receptor-mediated gene delivery by folate-PEG-baculovirus in vitro. J Biotechnol 131(3):353–361

    Article  PubMed  CAS  Google Scholar 

  37. Hwa Kim S, Hoon Jeong J, Chul Cho K, Wan Kim S, Gwan Park T (2005) Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J Control Release 104(1):223–232

    Article  PubMed  Google Scholar 

  38. Zheng Y, Song X, Darby M, Liang Y, He L, Cai Z, Chen Q, Bi Y, Yang X, Xu J, Li Y, Sun Y, Lee RJ, Hou S (2009) Preparation and characterization of folate-poly(ethylene glycol)-grafted-trimethylchitosan for intracellular transport of protein through folate receptor-mediated endocytosis. J Biotechnol 145(1):47–53

    Article  Google Scholar 

  39. Zhang C, Gao S, Jiang W, Lin S, Du F, Li Z, Huang W (2010) Targeted minicircle DNA delivery using folate-poly(ethylene glycol)-polyethylenimine as non-viral carrier. Biomaterials 31(23):6075–6086

    Article  PubMed  CAS  Google Scholar 

  40. Biswal BK, Debata NB, Verma RS (2009) Development of a targeted siRNA delivery system using FOL-PEG-PEI conjugate. Mol Biol Rep 37(6):2919–2926

    Article  PubMed  Google Scholar 

  41. Wang H, Zhao P, Liang X, Gong X, Song T, Niu R, Chang J (2010) Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 31(14):4129–4138

    Article  PubMed  CAS  Google Scholar 

  42. Yang L, Li J, Zhou W, Yuan X, Li S (2004) Targeted delivery of antisense oligodeoxynucleotides to folate receptor-overexpressing tumor cells. J Control Release 95(2):321–331

    Article  PubMed  CAS  Google Scholar 

  43. Zhou W, Yuan X, Wilson A, Yang L, Mokotoff M, Pitt B, Li S (2002) Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjug Chem 13(6):1220–1225

    Article  PubMed  CAS  Google Scholar 

  44. Lu T, Sun J, Chen X, Zhang P, Jing X (2009) Folate-conjugated micelles and their folate-receptor-mediated endocytosis. Macromol Biosci 9(11):1059–1068

    Article  PubMed  CAS  Google Scholar 

  45. Han X, Liu J, Liu M, Xie C, Zhan C, Gu B, Liu Y, Feng L, Lu W (2009) 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: preparation and evaluation in vitro. Int J Pharm 372(1–2):125–131

    Article  PubMed  CAS  Google Scholar 

  46. Fan L, Li F, Zhang H, Wang Y, Cheng C, Li X, Gu CH, Yang Q, Wu H, Zhang S (2010) Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials 31(21):5634–5642

    Article  PubMed  CAS  Google Scholar 

  47. Kim SH, Jeong JH, Mok H, Lee SH, Kim SW, Park TG (2007) Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog 23(1):232–237

    Article  PubMed  CAS  Google Scholar 

  48. Kang C, Yuan X, Li F, Pu P, Yu S, Shen C, Zhang Z, Zhang Y (2009) Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res A 93(2):585–594

    Google Scholar 

  49. Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57(15):2203–2214

    Article  PubMed  CAS  Google Scholar 

  50. Zhang C, Zhao L, Dong Y, Zhang X, Lin J, Chen Z (2010) Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm 76(1):10–16

    Article  PubMed  CAS  Google Scholar 

  51. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476

    Article  PubMed  CAS  Google Scholar 

  52. Simonson OE, Svahn MG, Tornquist E, Lundin KE, Smith CI (2005) Bioplex technology: novel synthetic gene delivery pharmaceutical based on peptides anchored to nucleic acids. Curr Pharm Des 11(28):3671–3680

    Article  PubMed  CAS  Google Scholar 

  53. Jayant S, Khandare JJ, Wang Y, Singh AP, Vorsa N, Minko T (2007) Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment. Pharm Res 24(11):2120–2130

    Article  PubMed  CAS  Google Scholar 

  54. Oishi M, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K (2005) Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. Chembiochem 6(4):718–725

    Article  PubMed  CAS  Google Scholar 

  55. Wakebayashi D, Nishiyama N, Yamasaki Y, Itaka K, Kanayama N, Harada A, Nagasaki Y, Kataoka K (2004) Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells. J Control Release 95(3):653–664

    Article  PubMed  CAS  Google Scholar 

  56. Cho CS, Cho KY, Park IK, Kim SH, Sasagawa T, Uchiyama M, Akaike T (2001) Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(l-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J Control Release 77(1–2):7–15

    Article  PubMed  CAS  Google Scholar 

  57. Wang YC, Liu XQ, Sun TM, Xiong MH, Wang J (2008) Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J Control Release 128(1):32–40

    Article  PubMed  CAS  Google Scholar 

  58. Frungillo L, Martins D, Teixeira S, Anazetti MC, Melo Pda S, Duran N (2009) Targeted antitumoral dehydrocrotonin nanoparticles with l-ascorbic acid 6-stearate. J Pharm Sci 98(12):4796–4807

    Article  PubMed  CAS  Google Scholar 

  59. Luo Y, Bernshaw NJ, Lu ZR, Kopecek J, Prestwich GD (2002) Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res 19(4):396–402

    Article  PubMed  CAS  Google Scholar 

  60. Jiang G, Park K, Kim J, Kim KS, Oh EJ, Kang H, Han SE, Oh YK, Park TG, Kwang Hahn S (2008) Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers 89(7):635–642

    Article  PubMed  CAS  Google Scholar 

  61. Wulbrand U, Feldman M, Pfestroff A, Fehman HC, Du J, Hiltunen J, Marquez M, Arnold R, Westlin JE, Nilsson S, Holmberg AR (2002) A novel somatostatin conjugate with a high affinity to all five somatostatin receptor subtypes. Cancer 94(4 Suppl):1293–1297

    Article  PubMed  CAS  Google Scholar 

  62. Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q (2010) A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 7(4):1159–1168

    Article  PubMed  Google Scholar 

  63. Rosenzweig SA, Atreya HS (2010) Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol 80(8):1115–1124

    Article  PubMed  CAS  Google Scholar 

  64. Laursen LS, Kjaer-Sorensen K, Andersen MH, Oxvig C (2007) Regulation of insulin-like growth factor (IGF) bioactivity by sequential proteolytic cleavage of IGF binding protein-4 and -5. Mol Endocrinol 21(5):1246–1257

    Article  PubMed  CAS  Google Scholar 

  65. Magadala P, Amiji M (2008) Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. AAPS J 10(4):565–576

    Article  PubMed  CAS  Google Scholar 

  66. Qiu Q, Domarkas J, Banerjee R, Katsoulas A, McNamee JP, Jean-Claude BJ (2007) Type II combi-molecules: design and binary targeting properties of the novel triazolinium-containing molecules JDD36 and JDE05. Anticancer Drugs 18(2):171–177

    Article  PubMed  CAS  Google Scholar 

  67. Dai FH, Chen Y, Ren CC, Li JJ, Yao M, Han JS, Gong Y, Yang SL, Zhu JD, Gu JR (2003) Construction of an EGF receptor-mediated histone H1(0)-based gene delivery system. J Cancer Res Clin Oncol 129(8):456–462

    Article  PubMed  CAS  Google Scholar 

  68. Kickhoefer VA, Han M, Raval-Fernandes S, Poderycki MJ, Moniz RJ, Vaccari D, Silvestry M, Stewart PL, Kelly KA, Rome LH (2009) Targeting vault nanoparticles to specific cell surface receptors. ACS Nano 3(1):27–36

    Article  PubMed  CAS  Google Scholar 

  69. Lee H, Kim TH, Park TG (2002) A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. J Control Release 83(1):109–119

    Article  PubMed  CAS  Google Scholar 

  70. Lee TK, Han JS, Fan ST, Liang ZD, Tian PK, Gu JR, Ng IO (2001) Gene delivery using a receptor-mediated gene transfer system targeted to hepatocellular carcinoma cells. Int J Cancer 93(3):393–400

    Article  PubMed  CAS  Google Scholar 

  71. Backer MV, Gaynutdinov TI, Gorshkova RJ II, Crouch T, Hu R, Aloise M, Arab KP, Backer JM (2003) Humanized docking system for assembly of targeting drug delivery complexes. J Control Release 89(3):499–511

    Article  PubMed  CAS  Google Scholar 

  72. Mai J, Song S, Rui M, Liu D, Ding Q, Peng J, Xu Y (2009) A synthetic peptide mediated active targeting of cisplatin liposomes to Tie2 expressing cells. J Control Release 139(3):174–181

    Article  PubMed  CAS  Google Scholar 

  73. Shoji M, Sun A, Kisiel W, Lu YJ, Shim H, McCarey BE, Nichols C, Parker ET, Pohl J, Mosley CA, Alizadeh AR, Liotta DC, Snyder JP (2008) Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa. J Drug Target 16(3):185–197

    Article  PubMed  CAS  Google Scholar 

  74. Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 7(5):552–558

    PubMed  CAS  Google Scholar 

  75. Oba M, Fukushima S, Kanayama N, Aoyagi K, Nishiyama N, Koyama H, Kataoka K (2007) Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alphavbeta3 and alphavbeta5 integrins. Bioconjug Chem 18(5):1415–1423

    Article  PubMed  CAS  Google Scholar 

  76. Dai W, Yang T, Wang X, Wang J, Zhang X, Zhang Q (2009) PHSCNK-Modified and doxorubicin-loaded liposomes as a dual targeting system to integrin-overexpressing tumor neovasculature and tumor cells. J Drug Target 18(4):254–263

    Article  Google Scholar 

  77. Li H, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22(3):225–250

    Article  PubMed  CAS  Google Scholar 

  78. Lu Q, Teng GJ, Zhang Y, Niu HZ, Zhu GY, An YL, Yu H, Li GZ, Qiu DH, Wu CG (2008) Enhancement of p53 gene transfer efficiency in hepatic tumor mediated by transferrin receptor through trans-arterial delivery. Cancer Biol Ther 7(2):218–224

    Article  PubMed  CAS  Google Scholar 

  79. Jiang YY, Liu C, Hong MH, Zhu SJ, Pei YY (2007) Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: design, synthesis, and biological evaluation. Bioconjug Chem 18(1):41–49

    Article  PubMed  Google Scholar 

  80. Hatakeyama H, Akita H, Maruyama K, Suhara T, Harashima H (2004) Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm 281(1–2):25–33

    Article  PubMed  CAS  Google Scholar 

  81. Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51(1):10–14

    Article  PubMed  CAS  Google Scholar 

  82. Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329(1–2):94–102

    Article  PubMed  CAS  Google Scholar 

  83. Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K, Yonemura Y (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137

    Article  PubMed  CAS  Google Scholar 

  84. Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98(2):195–207

    Article  PubMed  CAS  Google Scholar 

  85. Kakudo T, Chaki S, Futaki S, Nakase I, Akaji K, Kawakami T, Maruyama K, Kamiya H, Harashima H (2004) Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43(19):5618–5628

    Article  PubMed  CAS  Google Scholar 

  86. Jhaveri MS, Rait AS, Chung KN, Trepel JB, Chang EH (2004) Antisense oligonucleotides targeted to the human alpha folate receptor inhibit breast cancer cell growth and sensitize the cells to doxorubicin treatment. Mol Cancer Ther 3(12):1505–1512

    PubMed  CAS  Google Scholar 

  87. Chen S, Zhao X, Chen J, Kuznetsova L, Wong SS, Ojima I (2010) Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem 21(5):979–987

    Article  PubMed  Google Scholar 

  88. Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130(49):16778–16785

    Article  PubMed  CAS  Google Scholar 

  89. Yuan H, Luo K, Lai Y, Pu Y, He B, Wang G, Wu Y, Gu Z (2010) A novel poly(l-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions. Mol Pharm 7(4):953–962

    Article  PubMed  CAS  Google Scholar 

  90. Chandna P, Saad M, Wang Y, Ber E, Khandare J, Vetcher AA, Soldatenkov VA, Minko T (2007) Targeted proapoptotic anticancer drug delivery system. Mol Pharm 4(5):668–678

    Article  PubMed  CAS  Google Scholar 

  91. Dharap SS, Minko T (2003) Targeted proapoptotic LHRH-BH3 peptide. Pharm Res 20(6):889–896

    Article  PubMed  CAS  Google Scholar 

  92. Dharap SS, Qiu B, Williams GC, Sinko P, Stein S, Minko T (2003) Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Release 91(1–2):61–73

    Article  PubMed  CAS  Google Scholar 

  93. Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S, Sinko PJ, Stein S, Farmanfarmaian A, Minko T (2005) Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci USA 102(36):12962–12967

    Article  PubMed  CAS  Google Scholar 

  94. Minko T, Patil ML, Zhang M, Khandare JJ, Saad M, Chandna P, Taratula O (2010) LHRH-targeted nanoparticles for cancer therapeutics. Methods Mol Biol 624:281–294

    Article  PubMed  CAS  Google Scholar 

  95. Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP, Minko T (2008) Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release 130(2):107–114

    Article  PubMed  CAS  Google Scholar 

  96. Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP, He H, Minko T (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 140(3):284–293

    Article  PubMed  CAS  Google Scholar 

  97. Conn PM, Hazum E (1981) Luteinizing hormone release and gonadotropin-releasing hormone (GnRH) receptor internalization: independent actions of GnRH. Endocrinology 109(6):2040–2045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Minko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer US

About this chapter

Cite this chapter

Minko, T. (2012). Receptor Mediated Delivery Systems for Cancer Therapeutics. In: Siepmann, J., Siegel, R., Rathbone, M. (eds) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0881-9_12

Download citation

Publish with us

Policies and ethics