Skip to main content

Clique Relaxation Models in Social Network Analysis

  • Chapter
  • First Online:
Handbook of Optimization in Complex Networks

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 58))

Abstract

Clique relaxation models that were originally introduced in the literature on social network analysis are not only gaining increasing popularity in a wide spectrum of complex network applications, but also keep garnering attention of mathematicians, computer scientists, and operations researchers as a promising avenue for fruitful theoretical investigations. This chapter describes the origins of clique relaxation concepts and provides a brief overview of mathematical programming formulations for the corresponding optimization problems, algorithms proposed to solve these problems, and selected real-life applications of the models of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons Incorporated, Chichester, UK, 1989.

    MATH  Google Scholar 

  2. J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large graphs. In J. Abello and J. Vitter, editors, External memory algorithms and visualization, volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pages 119–130. American Mathematical Society, 1999.

    Google Scholar 

  3. J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detection. In S. Rajsbaum, editor, LATIN 2002: Theoretical Informatics, pages 598–612, London, 2002. Springer-Verlag.

    Google Scholar 

  4. R.D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3:113–126, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Applegate and D.S. Johnson. dfmax.c [c program, second dimacs implementation challenge]. ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers/.

  6. L. Babel. Finding maximum cliques in arbitrary and in special graphs. Computing, 46(4): 321–341, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Balas and J. Xue. Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring. Algorithmica, 15:397–412, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Balas and C. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal of Computing, 15:1054–1068, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Balasundram, S. Butenko, and I.V. Hicks. Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research, 59:133–142, 2011.

    Article  MathSciNet  Google Scholar 

  10. B. Balasundram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10:23–29, 2005.

    Article  MathSciNet  Google Scholar 

  11. R. Battiti and M. Protasi. Reactive local search for the maximum clique problem. Technical report, Algorithmica, 2001.

    Google Scholar 

  12. N. Berry, T. Ko, T. Moy, J. Smrcka, J. Turnley, and B. Wu. Emergent clique formation in terrorist recruitment. The AAAI-04 Workshop on Agent Organizations: Theory and Practice, July 25, 2004, San Jose, California, 2004. Online: http://www.cs.uu.nl/ virginia/aotp/papers.htm.

    Google Scholar 

  13. M. Bhattacharyya and S. Bandyopadhyay. Mining the largest quasi-clique in human protein interactome. In IEEE International Conference on Artificial Intelligence Systems, pages 194–199, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

    Google Scholar 

  14. V. Boginski. Network-based data mining: Operations research techniques and applications. In J. Cochran, editor, Encyclopedia of Operations Research and Management Science. Wiley, 2011.

    Google Scholar 

  15. V. Boginski, S. Butenko, and P. Pardalos. Network models of massive datasets. Computer Science and Information Systems, 1:79–93, 2004.

    Article  Google Scholar 

  16. V. Boginski, S. Butenko, and P. Pardalos. Statistical analysis of financial networks. Computational Statistics & Data Analysis, 48:431–443, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Boginski, S. Butenko, and P. Pardalos. Mining market data: a network approach. Computers & Operations Research, 33:3171–3184, 2006.

    Article  MATH  Google Scholar 

  18. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, pages 1–74, Dordrecht, The Netherlands, 1999. Kluwer Academic Publishers.

    Google Scholar 

  19. J.M. Bourjolly, G. Laporte, and G. Pesant. Heuristics for “nding k-clubs in an undirected graph. Computers and Operations Research, 27:559–569, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maximum k-club problem in an undirected graph. European Journal of Operational Research, 138:21–28, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22: 251–256, 1979.

    Article  MATH  Google Scholar 

  22. C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques on an undirected graph. Communications of ACM, 16:575–577, 1973.

    Article  MATH  Google Scholar 

  23. M. Brunato, H. Hoos, and R. Battiti. On effectively finding maximal quasi-cliques in graphs. In V. Maniezzo, R. Battiti, and J.P. Watson, editors, Proc. 2nd Learning and Intelligent Optimization Workshop, LION 2, volume 5313 of LNCS. Springer Verlag, 2008.

    Google Scholar 

  24. S. Butenko and W. Wilhelm. Clique-detection models in computational biochemistry and genomics. European Journal of Operational Research, 173:1–17, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique problem. Operations Research Letters, 9:375–382, 1990.

    Article  MATH  Google Scholar 

  26. M. Chams, A. Hertz, and A. de Werra. Some experiments with simulated annealing for coloring graphs. European Journal of Operational Research, 32:260–266, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Chen, W. Chung, J. J. Xu, G. Wang, Y. Qin, and M. Chau. Crime data mining: A general framework and some examples. Computer, 37(4):50–56, 2004.

    Article  Google Scholar 

  28. Y. P. Chen, A. L. Liestman, and J. Liu. Clustering algorithms for ad hoc wireless networks. In Y. Pan and Y. Xiao, editors, Ad Hoc and Sensor Networks, Wireless Networks and Mobile Computing, pages 145–164. Nova Science Publishers, New York, 2005.

    Google Scholar 

  29. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput., 14:210–223, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2):32–41, 2000.

    Article  Google Scholar 

  31. R. H. Davis. Social network analysis: An aid in conspiracy investigations. FBI Law Enforcement Bulletin, 50(12):11–19, 1981.

    Google Scholar 

  32. A. H. Dekker. Social network analysis in military headquarters using CAVALIER. In Proceedings of Fifth International Command and Control Research and Technology Symposium, pages 24–26, Canberra, Australia, 2000.

    Google Scholar 

  33. R. Diestel. Graph Theory. Springer-Verlag, Berlin, 3 edition, 2006.

    Google Scholar 

  34. Dimacs. Cliques, Coloring, and Satisfiability: Second Dimacs Implementation Challenge. http://dimacs.rutgers.edu/Challenges/, 1995.

    Google Scholar 

  35. E. Durkheim. The Division of Labor in Society. Free Press, New York, [1893] 1984. Translated by W. D. Halls.

    Google Scholar 

  36. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109–133, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  37. T. A. Feo, M. G. C. Resende, and S. H. Smith. A greedy randomized adaptive search procedure for maximum independent set. Operations Research, 42:860–878, 1994.

    Article  MATH  Google Scholar 

  38. I. Fischer and T. Meinl. Graph based molecular data mining - an overview. In W. Thissen, P. Wieringa, M. Pantic, and M. Ludema, editors, Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, pages 4578–4582, Piscataway, NJ, 2004. IEEE.

    Google Scholar 

  39. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.

    Google Scholar 

  40. M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique problem using a tabu search approach. Ann. Oper. Res., 41:385–403, May 1993.

    Article  MATH  Google Scholar 

  41. R. V. Gould. Multiple networks and mobilization in the paris commune, 1871. American Sociological Review, 56:716–729, 1991.

    Article  Google Scholar 

  42. R. Hodson. Dignity at Work. Cambridge University Press, Cambridge, England, 2001.

    Book  Google Scholar 

  43. S. Homer and M. Pinedo. Cliques, coloring, and satisfiability: Second DIMACS implementation challenge, chapter Experiments with polynomial-time clique approximation algorithms on very large graphs, pages 147–167. American Mathematical Society, 1996.

    Google Scholar 

  44. D. J. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society, Boston, MA, USA, 1996.

    Google Scholar 

  45. D.S. Johnson and C.R. Aragon. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256–278, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  46. D.S. Johnson, C.R. Aragon, L.A. McGoech, and C. Shevon. Optimization by simulated annealing: An experimental evaluation; part ii, graph coloring and number partitioning. Operations Research, 39:378–406, 1991.

    Article  MATH  Google Scholar 

  47. H.C. Johnston. Cliques of a graph – variations of Bron-Kerbosch algorithm. Int. J. Comput. Inf. Sci., 5:209–238, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Kopf and G. Ruhe. A computational study of the weighted independent set problem for general graphs. Foundations of Control Engineering, 12:167–180, 1987.

    MathSciNet  MATH  Google Scholar 

  49. V. Krebs. Mapping networks of terrorist cells. Connections, 24:45–52, 2002.

    Google Scholar 

  50. P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-based approach for routing in dynamic networks. ACM SIGCOMM Computer Communication Review, 27(2): 49–64, 1997.

    Article  Google Scholar 

  51. E. Loukakis and C. Tsouros. A depth first search algorithm to generate the family of maximal independent sets of a graph lexicographically. Computing, 27:249–266, 1981.

    Article  MathSciNet  Google Scholar 

  52. R.D. Luce. Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15:169–190, 1950.

    Article  MathSciNet  Google Scholar 

  53. R.D. Luce and A.D. Perry. A method of matrix analysis of group structure. Psychometrika, 14:95–116, 1949.

    Article  MathSciNet  Google Scholar 

  54. F. Mahdavi and B. Balasundaram. On inclusionwise maximal and maximum cardinality k-clubs in graphs. Preprint, 2010.

    Google Scholar 

  55. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Proc. Ninth Scandinavian Workshop Algorithm Theory (SWAT ’04), pages 260–272, 2004.

    Google Scholar 

  56. D. McAndrew. The structural analysis of criminal networks. In D. Canter and L. Alison, editors, The Social Psychology of Crime: Groups, Teams, and Networks, Offender Profiling Series, III, Aldershot, UK, 1999. Dartmouth.

    Google Scholar 

  57. B. McClosky and I. Hicks. Combinatorial algorithms for the maximum k-plex problem. Journal of Combinatorial Optimization, to appear.

    Google Scholar 

  58. G. A. Miller. WordNet, Princeton University. http://wordnet.princeton.edu, 2009.

    Google Scholar 

  59. R.J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:161–173, 1979.

    Article  Google Scholar 

  60. J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 68:103–127, 2003.

    Article  Google Scholar 

  61. H. Moser, R. Niedermeier, and M. Sorge. Algorithms and experiments for clique relaxations - finding maximum s-plexes. In Proceedings of the 8th International Symposium on Experimental Algorithms, pages 233–244, 2009.

    Google Scholar 

  62. P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120:197–207, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  63. J. Pattillo and S. Butenko. Clique, independent set, and graph coloring. In J. Cochran, editor, Encyclopedia of Operations Research and Management Science, pages 3150–3163. Wiley, 2011.

    Google Scholar 

  64. J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum quasi-clique problem. Working paper.

    Google Scholar 

  65. P. Paxton. Is social capital declining in the united states? a multiple indicator assessment. American Journal of Sociology, 105:88–127, 1999.

    Article  Google Scholar 

  66. F. J. Roethlisberger and W. J. Dickson. Management and the Worker. Harvard University Press, Cambridge, MA, 1939.

    Google Scholar 

  67. R. B. Rothenberg, J. J. Potterat, and D. E. Woodhouse. Personal risk taking and the spread of disease: Beyond core groups. Journal of Infectious Diseases, 174 (Supp. 2):S144–S149, 1996.

    Google Scholar 

  68. M. Sageman. Understanding Terrorist Networks. University of Pennsylvania Press, Philadelphia, PA, 2004.

    Google Scholar 

  69. R. J. Sampson and B. W. Groves. Community structure and crime: Testing social-disorganization theory. American Journal of Sociology, 94:774–802, 1989.

    Article  Google Scholar 

  70. J. Scott. Social Network Analysis: A Handbook. Sage Publications, London, 2 edition, 2000.

    Google Scholar 

  71. S. B. Seidman. Network structure and minimum degree. Social Networks, 5:269–287, 1983.

    Article  MathSciNet  Google Scholar 

  72. S. B. Seidman and B. L. Foster. A graph theoretic generalization of the clique concept. Journal of Mathematical Sociology, 6:139–154, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  73. E. C. Sewell. A branch and bound algorithm for the stability number of a sparse graph. INFORMS Journal on Computing, 10(4):438–447, 1998.

    Article  MathSciNet  Google Scholar 

  74. P. Soriano and M. Gendreau. Cliques, coloring, and satisfiability: Second DIMACS implementation challenge, chapter Tabu search algorithms for the maximum clique problem, pages 221–242. American Mathematical Society, 1996.

    Google Scholar 

  75. P. Soriano and M. Gendreau. Diversification strategies in tabu search algorithms for the maximum clique problem. Annals of Operations Research, 63:189–207, 1996.

    Article  MATH  Google Scholar 

  76. I. Stojmenovic, editor. Handbook of Wireless Networks and Mobile Computing. Wiley InterScience, 2002.

    Google Scholar 

  77. L. Terveen, W. Hill, and B. Amento. Constructing, organizing, and visualizing collections of topically related, web resources. ACM Transactions on Computer-Human Interaction, 6:67–94, 1999.

    Article  Google Scholar 

  78. E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. Journal of Global Optimization, 37(1):95–111, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  79. E. Tomita, S. Mitsuma, and H. Takahashi. Two algorithms for finding a near-maximum clique. Technical report, UEC-TR-C1, 1988.

    Google Scholar 

  80. S. Trukhanov, B. Balasundaram, and S. Butenko. Exact algorithms for hard node deletion problems in graphs. Working paper, 2011.

    Google Scholar 

  81. A. Veremyev and V. Boginski. Identifying large robust network clusters via new compact formulations of maximum k-club problems. European Journal of Operational Research, in revision, 2010.

    Google Scholar 

  82. T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explor. Newsl., 5(1):59–68, 2003.

    Article  Google Scholar 

  83. S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, New York, 1994.

    Google Scholar 

  84. D. R. Wood. An algorithm for finding a maximum clique in a graph. Operations Research Letters, 21(5):211–217, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  85. B. Wu and X. Pei. A parallel algorithm for enumerating all the maximal k-plexes. In J. G. Carbonell and J. Siekmann, editors, Emerging Technologies in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, chapter 47, pages 476–483. Springer, Berlin, Germany, 2007.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Pattillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pattillo, J., Youssef, N., Butenko, S. (2012). Clique Relaxation Models in Social Network Analysis. In: Thai, M., Pardalos, P. (eds) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications(), vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0857-4_5

Download citation

Publish with us

Policies and ethics