Skip to main content

Reactive Nitrogen Inflows and Nitrogen Use Efficiency in Agriculture: An Environment Perspective

  • Chapter
  • First Online:
Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change

Abstract

Increased use of nitrogenous (N) fertilizer has significantly altered the global N-cycle and produced nitrogenous gases of environmental consequence. While nitrous oxide (N2O) emissions contribute to global greenhouse gas accumulation and the stratospheric ozone depletion, degradation of groundwater quality by N use in agriculture is fundamentally a nitrate leaching problem. Despite these evident negative environmental impacts, consumption of N fertilizer cannot be reduced in view of the food security for teeming population in the developing countries. Various strategies, from agronomic to genetic engineering, have been tried to tackle this problem. Split application of N, use of slow-release fertilizers, nitrification inhibitors, and the use of organic manures are some agronomic techniques adopted. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient (i.e., which can grow under low N conditions), ensuring their optimum uptake of applied N by application of adequate amounts of fertilizer nutrients in a balanced manner and knowing the molecular mechanisms for their uptake as well as assimilatory pathways. Newer approaches like quantitative trait locus and proteomics could also help us in understanding these processes fully, hence could contribute greatly in enhancing nitrogen use efficiency and reduction of N pollution in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdin MA, Dwivedi RK, Abrol YP (2005) Nitrogen in agriculture. In: Singh RP, Shankar N, Jaiwal PK (eds) Nitrogen nutrition and plant productivity. Studium Press, Houston, TX, pp 1–41

    Google Scholar 

  • Abrol YP, Chatterjee SR, Kumar PA, Jain V (1999) Improvement in nitrogenous fertilizer utilization – physiological and molecular approaches. Curr Sci 76:1357–1364

    Google Scholar 

  • Ameziane RK, Bernhard K, Bates R, Lightfoot D (2000) Expression of the bacterial gdhA gene encoding NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 221:47–57

    Article  CAS  Google Scholar 

  • Andrews M, Lea PJ, Raven JA, Lindsey K (2004) Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Ann Appl Biol 145:25–40

    Article  CAS  Google Scholar 

  • Anjana US, Iqbal M, Abrol YP (2007) Are nitrate concentrations in leafy vegetables within safe limits? Curr Sci 92:355–360

    Google Scholar 

  • Aslam M, Travis RL, Huffaker RC (1993) Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intact roots of barley (Hordeum vulgare L.) seedlings. Plant Physiol 102:811–819

    PubMed  CAS  Google Scholar 

  • Aulakh MS, Khera TS, Doran JW, Bronson KF (2001) Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biol Fertil Soils 34:375–389

    Article  CAS  Google Scholar 

  • Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Lainé A-L, Jaminon O (2004) Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics 4:709–719

    Article  Google Scholar 

  • Bahrman N, Gouy A, Devienne-Barret F, Hirel B, Vedele F, Le Gouis J (2005). Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci 168:81–87

    Article  Google Scholar 

  • Beman JM, Arrigo K, Matson PM (2005) Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434:211–214

    Article  Google Scholar 

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 39:381–390

    Article  Google Scholar 

  • Carvalho HG, Lopes-Cardoso IA, Lima LM, Melo PM, Cullimore JV (2003) Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression. Plant Physiol 133:243–252

    Article  PubMed  CAS  Google Scholar 

  • Choudhary OP, Bajwa MS, Josan AS (2003) Fertilizer management in salt-affected soils – a review. J Res (PAU) 40(2):153–171

    Google Scholar 

  • Das A, Prasad M, Shivay YS, Subha KM (2004) Productivity and sustainability of cotton (Gossypium hirsutum L.)–wheat (Triticum aestivum L.) cropping system as influenced by prilled urea, farmyard manure and Azotobacter. J Agron Crop Sci 190:298–304

    Article  Google Scholar 

  • Delgado JA, Sparks RT, Follett RF, Sharkoff JL, Riggenbach RR (1999) Use of winter cover crops to conserve soil and water quality in the San Luis Valley of south central Colorado. In: Lal R (ed) Soil quality and soil erosion. CRC Press, Boca Raton, FL, pp 125–142

    Google Scholar 

  • Delgado JA, Riggenbach RR, Sparks RT, Dillon MT, Kawanabe LM, Ristau RJ (2001) Evaluation of nitrate-nitrogen transport in a potato–barley rotation soil science. Soc Am J 65:878–883

    CAS  Google Scholar 

  • Dubois F, Terce-Laforgue T, Gonzalez-Moro MB, Estavillo JM, Sangwan R, Gallis A, Hirel B (2003) Glutamae dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    Article  CAS  Google Scholar 

  • FAI (2008) Fertiliser statistics 2007–08. Fertiliser Association of India, New Delhi

    Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    Article  PubMed  CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signalling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224

    Article  PubMed  CAS  Google Scholar 

  • Fuentes SI, Allen DJ, Ortiz-Lopez A, Hernández G (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Gallardo F, Fu J, Canton FR, Garcia-Gutierez A, Canovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26

    Article  PubMed  CAS  Google Scholar 

  • Galloway JN (1995) Acid deposition: perspectives in time and space. Water Air Soil Pollut 85:15–24

    Article  CAS  Google Scholar 

  • Glass ADM, Siddiqi MY (1995) Nitrogen absorption by plant roots. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishers, New Delhi, pp 21–56

    Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker J, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unckles SE (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  PubMed  CAS  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89

    Article  CAS  Google Scholar 

  • Harrison GA, Tricarico JM, Meyer MD, Dawson KA (2007) Effects of optigen on fermentation, digestion, and N partitioning in rumen-simulating fermenters. J Anim Sci 85:98–105

    Google Scholar 

  • Havangi GV, Hegde BR (1983) Response of pearl millet and finger millet crop to fertilizer management under rainfed conditions. Fertil News 28:62–66

    Google Scholar 

  • Hirel B, Lea PJ (2001) Ammonium assimilation. In: Lea PJ, MorotGaudry JF, eds. Plant nitrogen. Berlin: Springer-Verlag, pp 79–99

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallis A (2001) Towards better understanding of the genetic and physiological basis for nitrogen use efficiency in Maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R (2001) Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot 52:1827–1833

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Shibato J, Kim D-W, Oh MK, et al (2009) Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiol Mol Bio Plants 15:31–41

    Article  PubMed  CAS  Google Scholar 

  • Kissel J, Krueger FR, Silen J, Clark BC (2004) The cometary and interstellar dust analyzer at comet 81P/Wild 2. Science 304:1774–1776

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Krapp A, Fraisier V, Scheible WR, Quesada A, Gojon A, Stitt M, Caboche M, Daniel-Vedele F (1998) Expression studies of Nrt2:1Np, a putative high affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J 14:723–731

    Article  CAS  Google Scholar 

  • Kumar PA, Parry MAJ, Mitchell RAC, Ahmad A, Abrol YP (2002) Photosynthesis and nitrogen use-efficiency. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer, Dordrecht, pp 23–34

    Google Scholar 

  • Ladha JK (2005) Improving the recovery efficiency of fertilizer nitrogen in cereals. J Indian Soc Soil Sci 53:472–483

    Google Scholar 

  • Lam HM, Hsieh MH, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J 16:345–353

    Article  Google Scholar 

  • Lam QD, Schmalz B, Fohrer N (2009) Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany. Adv Geosci 21:49–55

    Article  Google Scholar 

  • Lea PJ, Ireland RJ (1999) “Nitrogen Metabolism in higher plants” in “Plant Amino Acids” edited by B. Singh. Marcel Dekker publ pp 1–47

    Article  Google Scholar 

  • Lea US, Leydecker MT, Quilleré I, Meyer C, Lillo C (2006) Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence. Plant Physiol 140:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO 3 uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed  CAS  Google Scholar 

  • Lin TF, Demain AL (2006) Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. Appl Microbiol Biotechnol 43:701–705

    Article  Google Scholar 

  • Liu LH, Ludewig U, Frommer WB, von Wirén N (2003) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15:790–800

    Article  PubMed  CAS  Google Scholar 

  • London JG (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791

    Article  PubMed  CAS  Google Scholar 

  • Man HM, Boriel R, El-Khatib R, Kirby EG (2005) Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol 167:31–37

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Porter JR, Jamieson PD (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol 133:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Masclaux C, Quillere I, Gallis A, Hirel B (2001) The challenge of remobilization in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Ann Appl Biol 138:69–81

    Article  CAS  Google Scholar 

  • Miffin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  Google Scholar 

  • Migge A, Carrayol E, Hirel B, Becker TW (2000) Leaf specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta 2:252–260

    Article  Google Scholar 

  • Narang RS, Gill MS, Gosal KS, Mahal SS (2000) Irrigation and N-fertilizer requirements for maximum yield potential of wheat. J Res 37:20–27

    Google Scholar 

  • Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    Article  PubMed  CAS  Google Scholar 

  • Ortega JL, Temple SJ, Sengupta GC (2001) Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol 126:109–121

    Article  PubMed  CAS  Google Scholar 

  • Paramasivam S, Alva AK, Fares A, Sajwan KS (2002) Fate of nitrate and bromide in an unsaturated zone of a sandy soil under citrus production. J Environ Qual 31:671–681

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Pathak RR, Ahmad A, Lochab S, Raghuram N (2008) Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr Sci 94:1394–1403

    CAS  Google Scholar 

  • Prasad R (1998) Fertilizer urea, food security and the environment. Curr Sci 75:677–683

    Google Scholar 

  • Prasad R (1999) Text book of rice agronomy. In: Prasad R (ed) Nutrient management. Jain Brothers, New Delhi, pp 99–130

    Google Scholar 

  • Prasad R (2005) Research on nitrification inhibitor and slow release nitrogen fertilizer in India – a review. Proc Natl Acad Sci USA 75:149–157

    CAS  Google Scholar 

  • Prasad R, Power JF (1995) Nitrification inhibitor for agriculture, health and the environment. Adv Agron 54:233–281

    Article  CAS  Google Scholar 

  • Prasad M, Prasad R (1996) Response of various levels of nitrogen, zinc and magnesium on seed cotton yield. Indian J Plant Physiol 1:286–287

    CAS  Google Scholar 

  • Prasad R (2004) Integrated nitrogen management for sustained productivity, health and environment. Natl Symp Res Conserv and Agri Producti. (PAU, Ludiana November 22–25, 2004) extended summaries pp 299–300

    CAS  Google Scholar 

  • Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260

    Article  PubMed  CAS  Google Scholar 

  • Raghuram N, Sopory SK (1995) Light regulation of NR gene expression: mechanism and signal-response coupling. Physiol Mol Biol Plants 1:103–114

    Google Scholar 

  • Raghuram N, Pathak RR, Sharma P (2006) Signalling and the molecular aspects of N-use efficiency in higher plants. In: Singh RP, Jaiwal PK (eds) Biotechnological approaches to improve nitrogen use efficiency in plants. Studium Press, Houston, TX, pp 19–40

    Google Scholar 

  • Raun and Johnson (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Sachdev MS, Sachdev P, Deb DL (2000) Fate of fertilizer on irrigated wheat and its pollution potential. In: Optimizing nitrogen fertilizer application to irrigated wheat. IAEA-TECDOC-1164, IAEA, Vienna, pp 129–142

    Google Scholar 

  • Sangwan PS, Kumar V, Singh JP, Dahiya SS (2004a) Ammonia volatilization losses from surface applied urea in saline soils. Ann Biol 20:157–160

    Google Scholar 

  • Sangwan PS, Singh JP, Kumar V, Mehta SS (2004b) Ann Biol 20:153–156

    Google Scholar 

  • Sarkar R (2003) Nitrate-induced gene expression and metabolic regulation in rice. M.Sc. thesis. University of Mumbai, Mumbai

    Google Scholar 

  • Sarkar R (2005) Assessment of sustainability of rice-wheat system under different combinations of tillage, crop residue and fertilizer nitrogen applications using crop simulation model. Ph.D. thesis. Indian Institute of Technology, Kharagpur, West Bengal

    Google Scholar 

  • Sarkar MC, Banerjee NK, Rana DS, Uppal KS (1991) Field measurements of ammonia volatilization losses of nitrogen from urea applied to wheat. Fertil News 36(11):25–28

    Google Scholar 

  • Sarry JE, Kuhn L, Lay PL, Garin J, Bourguignon J (2006) Dynamics of Arabidopsis thaliana soluble proteome in response to different nutrient culture conditions. Electrophoresis 27:495–507

    Article  PubMed  CAS  Google Scholar 

  • Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C (2005) Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol 137:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Shrawat AK, Good AG (2008) Genetic engineering approaches to improving nitrogen use efficiency. ISB News Report, May 2008

    Google Scholar 

  • Sihag D, Singh JP (1997) Effect of organic materials on ammonia volatilization losses from urea under submerged condition. Indian Soc Soil Sci 45:822–825

    Google Scholar 

  • Singh Y, Singh B (2001) Efficient management of primary nutrients in the rice-wheat system. J Crop Prod 4:23–86

    Article  Google Scholar 

  • Singh JP, Dahiya DJ, Kumar V (1995a) Effect of water depth and initial soil water content on the volatilization losses of ammonia. Indian Soc Soil Sci 43:177–182

    Google Scholar 

  • Singh JP, Kumar V, Singh M (1995b) Effect of different nitrogen carriers and methods of urea application on ammonia volatilization losses in soils. Indian Soc Soil Sci 43:269–271

    Google Scholar 

  • Singh Y, Singh B, Gupta RK, Khind CS, Ladha JK (2003) Managing pressmud cake for nitrogen and phosphorus nutrition of crops in a rice-wheat rotation. Int Rice Res Notes 28(1):59–61

    Google Scholar 

  • Stulen I, Perez-Soba M, De Kok LJ, Van Der Eerden L (1998) Impact of gaseous nitrogen deposition on plant functioning. New Phytol. 139:61–67

    Google Scholar 

  • Thiellement H, Bharmann N, Damerval C (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20:2013–2026

    Article  PubMed  CAS  Google Scholar 

  • Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Anthony DMG (2000) Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol 123:307–318

    Article  PubMed  CAS  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3:315–324

    Article  PubMed  CAS  Google Scholar 

  • Wood CW, Marshall SB, Cabrera ML (2000) Improved method for field scale measurement of ammonia volatilization. Commun Soil Sci Plant Anal 31:581–590

    Article  CAS  Google Scholar 

  • Yamaya T (2003) Biotechnological approaches for modification of nitrogen assimilation in rice. In: Jaiwal PK, Singh RP (eds) Plant gernetic engineering, vol 2: Improvement of food crops. SciTech Publishing, Houston, TX, pp 79–88

    Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    Article  PubMed  CAS  Google Scholar 

  • Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2006) Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149:121–131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hakeem, K.R., Chandna, R., Ahmad, A., Iqbal, M. (2012). Reactive Nitrogen Inflows and Nitrogen Use Efficiency in Agriculture: An Environment Perspective. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_10

Download citation

Publish with us

Policies and ethics