Skip to main content

Global Approaches for Facility Layout and VLSI Floorplanning

  • Chapter
  • First Online:
Handbook on Semidefinite, Conic and Polynomial Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

  • 5783 Accesses

Abstract

This chapter provides an overview of conic optimization models for facility layout and VLSI floorplanning problems. We focus on two classes of problems to which conic optimization approaches have been successfully applied, namely the single-row facility layout problem, and fixed-outline floorplanning in VLSI circuit design. For the former, a close connection to the cut polytope has been exploited in positive semidefinite and integer programming approaches. In particular, the semidefinite optimization approaches can provide global optimal solutions for instances with up to 40 facilities, and tight global bounds for instances with up to 100 facilities. For the floorplanning problem, a conic optimization model provided the first non-trivial lower bounds in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, E.C.: A semidefinite programming model for the facility layout problem. Master’s thesis, University of Waterloo (2010)

    Google Scholar 

  2. Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006)

    Google Scholar 

  3. Amaral, A.R.S.: An exact approach for the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008)

    Google Scholar 

  4. Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009)

    Google Scholar 

  5. Amaral, A.R.S.: On the exact solution of a facility layout problem. Discr. Appl. Math. 157(1), 183–190 (2009)

    Google Scholar 

  6. Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single-row facility layout problem. Technical report, Department of Management Science, Lancaster University (March 2008)

    Google Scholar 

  7. Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optim. 2(2), 113–122 (2005)

    Google Scholar 

  8. Anjos, M.F., Vannelli, A.: Globally optimal solutions for large single-row facility layout problems. Technical report, University of Waterloo (2006)

    Google Scholar 

  9. Anjos, M.F., Vannelli, A.: A new mathematical-programming framework for facility-layout design. INFORMS J. Comp. 18(1), 111–118 (2006)

    Google Scholar 

  10. Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comp. 20(4), 611–617 (2008)

    Google Scholar 

  11. Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24(4), 805–817 (2009)

    Google Scholar 

  12. Barahona, F., Mahjoub, A.R.: On the cut polytope. Mathematical Programming 36, 157–173, 1986.

    Google Scholar 

  13. Bernardi, S.: A three-stage mathematical-programming method for the multi-floor facility layout problem. Master’s thesis, University of Waterloo (2010)

    Google Scholar 

  14. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11/12(1-4), 613–623 (1999)

    Google Scholar 

  15. Buchheim, C., Liers, F., Oswald, M.: Speeding up IP-based algorithms for constrained quadratic 0-1 optimization. Mathematical Programming (Series B) 124(1-2), 513–535 (2010)

    Google Scholar 

  16. Buchheim, C., Wiegele, A., Zheng, L.: Exact algorithms for the quadratic linear ordering problem. INFORMS J. on Computing 2(1), 168–177 (2010)

    Google Scholar 

  17. Caprara, A., Oswald, M., Reinelt, G., Schwarz, R., Traversi, E.: Optimal linear arrangements using betweenness variables. Mathematical Programming (Series C) 3(3), 261–280 (2011)

    Google Scholar 

  18. Castillo, I., Sim, T.: A spring-embedding approach for the facility layout problem. J. Oper. Res. Soc. 55, 73–81 (2004)

    Google Scholar 

  19. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems with unequal areas: A comparison of MILP and MINLP optimixation methods. Computers and Chemical Engineering 30(1), 54–69 (2005)

    Google Scholar 

  20. Castillo, I., Westerlund, T.: An ε-accurate model for optimal unequal-area block layout design. Comput. Oper. Res. 32(3), 429–447 (2005)

    Google Scholar 

  21. Çela, E.: The Quadratic Assignment Problem. In: Combinatorial Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  22. Charon, I., Hudry, O.: An updated survey on the linear ordering problem for weighted or unweighted tournaments. Ann. Oper. Res. 175, 107–158 (2010)

    Google Scholar 

  23. Christof, T., Oswald, M., Reinelt, G.: Consecutive ones and a betweenness problem in computational biology. In Proceedings of the 6th Conference on Integer Programming and Combinatorial Optimization, Springer-Verlag Lecture Notes in Computer Science 1412 (1998)

    Google Scholar 

  24. de Alvarenga, A.G., Negreiros-Gomes, F.J., Mestria, M.: Metaheuristic methods for a class of the facility layout problem. J. Intell. Manuf. 11, 421–430 (2000)

    Google Scholar 

  25. De Simone, C.: The cut polytope and the boolean quadric polytope. Discrete Mathematics 79, 71–75 (1989)

    Google Scholar 

  26. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics, vol. 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin (1997)

    Google Scholar 

  27. Díaz, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing Surveys 34, 313–356 (2002)

    Google Scholar 

  28. Foulds, L.R.: Graph Theory Applications. Springer-Verlag, New York (1991)

    Google Scholar 

  29. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)

    Google Scholar 

  30. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Mathematical Programming 33, 43–60 (1985)

    Google Scholar 

  31. Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Sciences 17, 219–229 (1970)

    Google Scholar 

  32. Hammer, P.L.: Some network flow problems solved with pseudo-boolean programming. Operations Research 13, 388–399 (1965)

    Google Scholar 

  33. Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Program. 93(2, Ser. A), 173–194 (2002)

    Google Scholar 

  34. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)

    Google Scholar 

  35. Heragu, S.S.: Facilities Design. iUniverse, second edition (2006)

    Google Scholar 

  36. Heragu, S.S., Alfa, A.S.: Experimental analysis of simulated annealing based algorithms for the layout problem. European J. Oper. Res. 57(2), 190–202 (1992)

    Google Scholar 

  37. Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988)

    Google Scholar 

  38. Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. European J. Oper. Res. 53, 1–13 (1991)

    Google Scholar 

  39. Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Technical report, Alpen-Adria-Universität Klagenfurt (August 2010)

    Google Scholar 

  40. Jankovits, I.: An improved convex optimization model for two-dimensional facility layout. Master’s thesis, University of Waterloo (2006)

    Google Scholar 

  41. Karp, R.M., Held, M.: Finite-state processes and dynamic programming. SIAM J. Appl. Math. 15, 693–718 (1967)

    Google Scholar 

  42. Kim, S., Kojima, M., Yamashita, M.: Second order cone programming relaxation of a positive semidefinite constraint. Optim. Methods Softw. 18(5), 535–541 (2003)

    Google Scholar 

  43. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)

    Google Scholar 

  44. Kumar, K.R., Hadjinicola, G.C., Lin, T.: A heuristic procedure for the single-row facility layout problem. European J. Oper. Res. 87(1), 65–73 (1995)

    Google Scholar 

  45. Lewis, M., Alidaee, B., Glover, F., Kochenberger, G.: A note on xQx as a modelling and solution framework for the linear ordering problem. International Journal of Operational Research 5(2), 152–162 (2009)

    Google Scholar 

  46. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut, pp. 47–68. New Optimization Algorithms in Physics. Wiley-VCH (2004)

    Google Scholar 

  47. Liu, W., Vannelli, A.: Generating lower bounds for the linear arrangement problem. Discrete Appl. Math. 59(2), 137–151 (1995)

    Google Scholar 

  48. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Google Scholar 

  49. Love, R.F., Wong, J.Y.: On solving a one-dimensional space allocation problem with integer programming. INFOR 14(2), 139–143 (1976)

    Google Scholar 

  50. Luo, C., Anjos, M.F., Vannelli, A.: A nonlinear optimization methodology for VLSI fixed-outline floorplanning. J. Comb. Optim. 16(4), 378–401 (2008)

    Google Scholar 

  51. Mavridou, T.D., Pardalos, P.M.: Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput. Optim. Appl., 7(1), 111–126 (1997)

    Google Scholar 

  52. Meller, R.D., Chen, W., Sherali, H.D.: Applying the sequence-pair representation to optimal facility layout designs. Oper. Res. Lett. 35(5), 651–659 (2007)

    Google Scholar 

  53. Meller, R.D., Gau, K.Y.: The facility layout problem: recent and emerging trends and perspectives. Journal of Manufacturing Systems 15, 351–366 (1996)

    Google Scholar 

  54. Meller, R.D., Narayanan, V., Vance, P.H.: Optimal facility layout design. Oper. Res. Lett. 23(3-5), 117–127 (1998)

    Google Scholar 

  55. Montreuil, B.: A modelling framework for integrating layout design and flow network design. In: White, J.A., Pence, I.W. (eds.) Progress in Material Handling and Logistics, vol. 2, pp. 95–116. Springer-Verlag (1991)

    Google Scholar 

  56. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: VLSI module placement based on rectangle-packing by the sequence-pair. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 15(12), 1518–1524 (1996)

    Google Scholar 

  57. Murata, H., Kuh, E.S.: Sequence-pair based placement method for hard/soft/pre-placed modules. Proceedings of the International Symposium on Physical Design, pp. 167–172 (1998)

    Google Scholar 

  58. Picard, J.-C., Queyranne, M.: On the one-dimensional space allocation problem. Oper. Res. 29(2), 371–391 (1981)

    Google Scholar 

  59. Reinelt, G.: The Linear Ordering Problem: Algorithms and Applications. Heldermann Verlag (1985)

    Google Scholar 

  60. Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In Integer programming and combinatorial optimization, vol. 4513 of Lecture Notes in Computer Science, pp. 295–309. Springer Verlag, Berlin (2007)

    Google Scholar 

  61. Romero, D., Sánchez-Flores, A.: Methods for the one-dimensional space allocation problem. Comput. Oper. Res. 17(5), 465–473 (1990)

    Google Scholar 

  62. Sait, S.M., Youssef, H.: VLSI physical design automation: theory and practice. IEEE Press, New York, USA (1995)

    Google Scholar 

  63. Sanjeevi, S., Kianfar, K.: A polyhedral study of triplet formulation for single row facility layout problem. Discrete Appl. Math. 158(16), 1861–1867 (2010)

    Google Scholar 

  64. Sherali, H.D., Fraticelli, B.M.P., Meller, R.D.: Enhanced model formulation for optimal facility layout. Oper. Res. 51(4), 629–644 (2003)

    Google Scholar 

  65. Simmons, D.M.: One-dimensional space allocation: An ordering algorithm. Oper. Res. 17, 812–826 (1969)

    Google Scholar 

  66. Simmons, D.M.: A further note on one-dimensional space allocation. Oper. Res. 19, p. 249 (1971)

    Google Scholar 

  67. Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout problems. Intl J. Adv. Manuf. Tech. 30(5–6), 425–433 (2006)

    Google Scholar 

  68. Suryanarayanan, J.K., Golden, B.L., Wang, Q.: A new heuristic for the linear placement problem. Computers & Operations Research 18(3), 255–262 (1991)

    Google Scholar 

  69. Takouda, P.L., Anjos, M.F., Vannelli, A.: Global lower bounds for the VLSI macrocell floorplanning problem using semidefinite optimization. In Proceedings of IWSOC 2005, pp. 275–280 (2005)

    Google Scholar 

  70. Wong, D.F., Liu, C.L.: A new algorithm for floorplan design. In: Proc. of ACM/IEEE Design Automation Conf., pp. 101–107 (1986)

    Google Scholar 

  71. Xie, W., Sahinidis, N.V.: A branch-and-bound algorithm for the continuous facility layout problem. Comput. & Chem. Eng. 32, 1016–1028 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the following institutions: The Alexander von Humboldt Foundation and the Natural Sciences and Engineering Research Council of Canada (first author), and the German Science Foundation (second author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel F. Anjos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anjos, M.F., Liers, F. (2012). Global Approaches for Facility Layout and VLSI Floorplanning. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_29

Download citation

Publish with us

Policies and ethics