Skip to main content

A PRC Description of How Inhibitory Feedback Promotes Oscillation Stability

  • Chapter
  • First Online:
Phase Response Curves in Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 6))

Abstract

Using methods of geometric dynamical systems modeling, we demonstrate the mechanism through which inhibitory feedback synapses to oscillatory neurons stabilize the oscillation, resulting in a flattened phase-resetting curve. In particular, we use the concept of a synaptic phase-resetting curve to demonstrate that periodic inhibitory feedback to an oscillatory neuron locks at a stable phase where it has no impact on cycle period and yet it acts to counter the effects of extrinsic perturbations. These results are supported by data from the stable bursting oscillations in the crustacean pyloric central pattern generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\epsilon {v}^{{\prime}} = ({i}_{\mathrm{ext}}-{i}_{L}-{i}_{\mathrm{Ca}}-{i}_{\mathrm{syn}})/{c}_{m};\, {m}_{8}(v) = 1/(1+\exp (-(v+61)/4.2));\, {h}_{8}(v) = 1/(1+\exp ((v+88)/8.6));\, {\tau }_{h}(v) = (270/(1+\exp ((v +84)/7.3)))(\exp ((v +162)/30.0))+54;\, {i}_{\mathrm{ext}} = -0.45,\,{g}_{L} = 0.3142,\,{g}_{\mathrm{Ca}} = 1.2567,{g}_{\mathrm{syn}} = 0.0235\)(active for 219.4 ms starting at t 0 = 302 ms in each cycle), \({E}_{L} = -62.5,{E}_{\mathrm{Ca}} = 120,{E}_{\mathrm{syn}} = -80,{c}_{m} = 7,\epsilon = 1.\)

References

  • Achuthan, S., & Canavier, C. C. (2009). Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J Neurosci, 29(16), 5218–5233. doi: 29/16/5218 [pii] 10.1523/JNEUROSCI.0426–09.2009

    Article  PubMed  CAS  Google Scholar 

  • Bartos, M., Vida, I., & Jonas, P.(2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci, 8(1), 45–56. doi: nrn2044 [pii] 10.1038/nrn2044

    Article  PubMed  CAS  Google Scholar 

  • Borgers, C., & Kopell, N.(2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput, 15(3), 509–538. doi: 10.1162/089976603321192059

    Article  PubMed  Google Scholar 

  • Brown, E., Moehlis, J., Holmes, P., Clayton, E., Rajkowski, J., & Aston-Jones, G.(2004). The influence of spike rate and stimulus duration on noradrenergic neurons. J Comput Neurosci, 17(1), 13–29. doi: 10.1023/B:JCNS.0000023867.25863.a4 5273291 [pii]

    Article  PubMed  Google Scholar 

  • Dickinson, P. S.(2006). Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol, 16(6), 604–614. doi: S0959–4388(06)00148–6 [pii] 10.1016/j.conb.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, Bard.(2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Ermentrout, Bard, & Terman, David H.(2010). Mathematical foundations of neuroscience. New York: Springer.

    Book  Google Scholar 

  • Friesen, W. O.(1994). Reciprocal inhibition: a mechanism underlying oscillatory animal movements. Neurosci Biobehav Rev, 18(4), 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S., Markram, H., De Schutter, E., Silberberg, G., & LeBeau, F. E.(2005). Microcircuits in action–from CPGs to neocortex. Trends Neurosci, 28(10), 525–533. doi: S0166–2236(05)00211–0 [pii] 10.1016/j.tins.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer, John, & Holmes, Philip.(1997). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields(Corr. 5th print. ed.). New York: Springer.

    Google Scholar 

  • Kintos, N., Nusbaum, M. P., & Nadim, F.(2008). A modeling comparison of projection neuron- and neuromodulator-elicited oscillations in a central pattern generating network. J Comput Neurosci, 24(3), 374–397. doi: 10.1007/s10827–007–0061–7

    Article  PubMed  Google Scholar 

  • Mamiya, A., & Nadim, F.(2004). Dynamic interaction of oscillatory neurons coupled with reciprocally inhibitory synapses acts to stabilize the rhythm period. J Neurosci, 24(22), 5140–5150.

    Article  PubMed  CAS  Google Scholar 

  • Manor, Y., Nadim, F., Epstein, S., Ritt, J., Marder, E., & Kopell, N. (1999). Network oscillations generated by balancing graded asymmetric reciprocal inhibition in passive neurons. J Neurosci, 19(7), 2765–2779.

    PubMed  CAS  Google Scholar 

  • Marder, E., & Calabrese, R. L.(1996). Principles of rhythmic motor pattern generation. Physiol Rev, 76(3), 687–717.

    PubMed  CAS  Google Scholar 

  • Mishchenko, E., & Rozov, N.(1997). Differential Equations with Small Parameters and Relaxation Oscillations. New York: Plenum Press.

    Google Scholar 

  • Oprisan, S. A., Thirumalai, V., & Canavier, C. C.(2003). Dynamics from a time series: can we extract the phase resetting curve from a time series? Biophys J, 84(5), 2919–2928. doi: S0006–3495(03)70019–8 [pii] 10.1016/S0006–3495(03)70019–8

    Article  PubMed  CAS  Google Scholar 

  • Pinsker, H. M.(1977). Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. J Neurophysiol, 40(3), 527–543.

    Google Scholar 

  • Prinz, A. A., Thirumalai, V., & Marder, E.(2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J Neurosci, 23(3), 943–954.

    PubMed  CAS  Google Scholar 

  • Somers, D., & Kopell, N.(1993). Rapid synchronization through fast threshold modulation. Biol Cybern, 68(5), 393–407.

    Article  PubMed  CAS  Google Scholar 

  • Thirumalai, V., Prinz, A. A., Johnson, C. D., & Marder, E.(2006). Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. J Neurophysiol, 95(3), 1762–1770.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J., & Buzsaki, G.(1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci, 16(20), 6402–6413.

    PubMed  CAS  Google Scholar 

  • Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H.(2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol, 38(3), 315–336. doi: S0167876000001732 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zhou, L., LoMauro, R. and Nadim, F.(2006). The interaction between facilitation and depression of two release mechanisms in a single synapse. Neurocomputing, 69, 1001–1005.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lian Zhou for earlier ideas on this work. Supported by NIH MH-60605 (FN), NSF DMS0615168 (AB) and a Fulbright–Nehru Fellowship (AB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzan Nadim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nadim, F., Zhao, S., Bose, A. (2012). A PRC Description of How Inhibitory Feedback Promotes Oscillation Stability. In: Schultheiss, N., Prinz, A., Butera, R. (eds) Phase Response Curves in Neuroscience. Springer Series in Computational Neuroscience, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0739-3_16

Download citation

Publish with us

Policies and ethics