Skip to main content

Immune Regulation of Tumor Immunity by NKT Cells

  • Chapter
  • First Online:
Natural Killer T cells

Abstract

While NKT cells comprise only a very small percentage of lymphoctyes, they play very important roles in many disease settings, including cancer. NKT cells can be subdivided into at least two groups that play opposing roles in cancer and also counterregulate each other. While type I NKT cells can promote strong antitumor immunity, type II NKT cells suppress antitumor immune responses and play more of a regulatory role, similar to Tregs and MDSCs. The balance between type I and type II NKT cells can determine whether immune responses to tumors will be activated, resulting in tumor elimination, or will be suppressed, allowing the tumor to grow. Understanding the interactions between NKT cells may aid in the development of new immunotherapies for cancer which can shift the balance of this immunoregulatory axis towards immune activation and tumor killing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166: 678–689.

    PubMed  CAS  Google Scholar 

  • Ambrosino E, Berzofsky JA, and Terabe M (2008) Regulation of tumor immunity: the role of NKT cells. Expert Opin Biol Ther 8: 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosino E, Terabe M, Halder RC et al (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: A new immunoregulatory axis. J Immunol 179: 5126–5136.

    PubMed  CAS  Google Scholar 

  • Arrenberg P, Halder R, Dai Y et al (2010) Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci USA 107: 10984–10989.

    Article  PubMed  CAS  Google Scholar 

  • Azuma T, Takahashi T, Kunisato A et al (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63: 4516–4520.

    PubMed  CAS  Google Scholar 

  • Behar SM, and Porcelli SA (2007) CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 314: 215–250.

    Article  PubMed  CAS  Google Scholar 

  • Bellone M, Ceccon M, Grioni M et al (2010) iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One 5: e8646.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Killeen N, Littman DR et al (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263: 1774–1778.

    Article  PubMed  CAS  Google Scholar 

  • Benlagha K, Weiss A, Beavis A et al (2000). In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191: 1895–1903.

    Google Scholar 

  • Berzofsky JA, and Terabe M (2008) NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180: 3627–3635.

    PubMed  CAS  Google Scholar 

  • Blomqvist M, Rhost S, Teneberg S et al (2009) Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur J Immunol 39: 1726–1735.

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, and Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5: 641–654.

    Article  PubMed  CAS  Google Scholar 

  • Brutkiewicz RR (2006) CD1d ligands: the good, the bad, and the ugly. J Immunol 177: 769–775.

    PubMed  CAS  Google Scholar 

  • Cardell S, Tangri S, Chan S et al (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182: 993–1004.

    Article  PubMed  CAS  Google Scholar 

  • Carnaud C, Lee D, Donnars O et al (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163: 4647–4650.

    PubMed  CAS  Google Scholar 

  • Chang DH, Deng H, Matthews P et al (2008) Inflammation associated lysophospholipids as ligands for CD1d restricted T cells in human cancer. Blood 112: 1308–1316.

    Article  PubMed  CAS  Google Scholar 

  • Chiodoni C, Stoppacciaro A, Sangaletti S et al (2001) Different requirements for alpha-­galactosylceramide and recombinant IL-12 antitumor activity in the treatment of C-26 colon carcinoma hepatic metastases. Eur J Immunol 31: 3101–3110.

    Article  PubMed  CAS  Google Scholar 

  • Chiu YH, Jayawardena J, Weiss A et al (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Crowe NY, Smyth MJ, and Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196: 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Shin T, Kawano T et al (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278: 1623–1626.

    Article  PubMed  CAS  Google Scholar 

  • De Santo C, Salio M, Masri SH et al (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118: 4036–4048.

    Article  PubMed  CAS  Google Scholar 

  • Dellabona P, Padovan E, Casorati G et al (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J Exp Med 180: 1171–1176.

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Geller MD, Chang DH et al (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197: 1667–1676.

    Article  PubMed  CAS  Google Scholar 

  • Duarte N, Stenstrom M, Campino S et al (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol 173: 3112–3118.

    PubMed  CAS  Google Scholar 

  • Eberl G, and MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30: 985–992.

    Article  PubMed  CAS  Google Scholar 

  • Exley MA, Tahir SM, Cheng O et al (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol 167: 5531–5534.

    PubMed  CAS  Google Scholar 

  • Fichtner-Feigl S, Strober W, Kawakami K et al (2005) IL-13 signaling through the IL-13alpha(2) receptor is involved in induction of TGF-beta(1) production and fibrosis. Nat Med 12: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Fichtner-Feigl S, Terabe M, Kitani A et al (2008) Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res 68: 3467–3475.

    Article  PubMed  CAS  Google Scholar 

  • Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of Lyso-Phospholipids by Human Natural Killer T Lymphocytes. PLoS Biol 7: e1000228.

    Article  PubMed  CAS  Google Scholar 

  • Fuji N, Ueda Y, Fujiwara H et al (2000) Antitumor effect of alpha-galactosylceramide (KRN7000) on spontaneous hepatic metastases requires endogenous interleukin 12 in the liver. Clin Cancer Res 6: 3380–3387.

    PubMed  CAS  Google Scholar 

  • Fujii S, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199: 1607–1618.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Kronenberg M et al (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3: 867–874.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Shimizu K, Smith C et al (2003) Activation of natural killer T cells by alpha-­galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198: 267–279.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4: 941–952.

    Article  PubMed  CAS  Google Scholar 

  • Gadola SD, Dulphy N, Salio M et al (2002) Valpha24-JalphaQ-independent, CD1d-restricted recognition of alpha-galactosylceramide by human CD4(+) and CD8alphabeta(+) T lymphocytes. J Immunol 168: 5514–5520.

    PubMed  CAS  Google Scholar 

  • Galili U, Clark MR, Shohet SB et al (1987) Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci USA 84: 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  • Galili U, Shohet SB, Kobrin E et al (1988) Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263: 17755–17762.

    PubMed  CAS  Google Scholar 

  • Gallina G, Dolcetti L, Serafini P et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116: 2777–2790.

    Article  PubMed  CAS  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8: 3702–3709.

    PubMed  CAS  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M et al (2004) NKT cells: what’s in a name? Nat Rev Immunol 4: 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Gumperz JE, Miyake S, Yamamura T et al (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195: 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Gumperz JE, Roy C, Makowska A et al (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12: 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Halder RC, Aguilera C, Maricic I et al (2007) Type II NK T cell-mediated anergy induction in type I NK T cells prevents inflammatory liver disease. J. Clin. Invest. 117: 2302–2312.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Godfrey DI, and Smyth MJ (2004) Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem 11: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Rovero S, Forni G et al (2003) Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA 100: 9464–9469.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H et al (2001a) Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur J Immunol 31: 1720–1727.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H et al (2002) IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100: 1728–1733.

    PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H et al (2001b) Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol 166: 6012–6018.

    PubMed  CAS  Google Scholar 

  • Hong C, Lee H, Oh M et al (2006) CD4+ T cells in the absence of the CD8+ cytotoxic T cells are critical and sufficient for NKT cell-dependent tumor rejection. J Immunol 177: 6747–6757.

    PubMed  CAS  Google Scholar 

  • Hong C, Lee H, Park YK et al (2009) Regulation of secondary antigen-specific CD8(+) T-cell responses by natural killer T cells. Cancer Res 69: 4301–4308.

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Kanno M, Kimoto H et al (1986) Sequence and expression of transcripts of the T-cell antigen receptor alpha-chain gene in a functional, antigen-specific suppressor-T-cell hybridoma. Proc Natl Acad Sci USA 83: 8708–8712.

    Article  PubMed  CAS  Google Scholar 

  • Jahng A, Maricic I, Aguilera C et al (2004) Prevention of Autoimmunity by Targeting a Distinct, Noninvariant CD1d-reactive T Cell Population Reactive to Sulfatide. J Exp Med 199: 947–957.

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Game DS, Davies D et al (2005) Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4  +  CD25+ regulatory T cells? Eur J Immunol 35: 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Karadimitris A, Gadola S, Altamirano M et al. (2001). Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Acad Sci USA 98: 3294–3298.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of ­valpha14 NKT cells by glycosylceramides. Science 278: 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y et al (1998) Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valpha14 NKT cells. Proc Natl Acad Sci USA 95: 5690–5693.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Nakayama T, Kamada N et al (1999) Antitumor cytotoxicity mediated by ligand-­activated human V alpha24 NKT cells. Cancer Res 59: 5102–5105.

    PubMed  CAS  Google Scholar 

  • Kenna T, Mason LG, Porcelli SA et al (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171: 1775–1779.

    PubMed  CAS  Google Scholar 

  • Kim JH, Choi EY, and Chung DH (2007) Donor bone marrow type II (non-Valpha14Jalpha18 CD1d-restricted) NKT cells suppress graft-versus-host disease by producing IFN-gamma and IL-4. J Immunol 179: 6579–6587.

    PubMed  CAS  Google Scholar 

  • Kinjo Y, Wu D, Kim G et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434: 520–525.

    Article  PubMed  CAS  Google Scholar 

  • Koseki H, Imai K, Ichikawa T et al (1989) Predominant use of a particular alpha-chain in suppressor T cell hybridomas specific for keyhole limpet hemocyanin. Int Immunol 1: 557–564.

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23: 877–900.

    Article  PubMed  CAS  Google Scholar 

  • Lantz O, and Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J Exp Med 180: 1097–1106.

    Article  PubMed  CAS  Google Scholar 

  • Liu R, La Cava A, Bai XF et al (2005) Cooperation of Invariant NKT Cells and CD4  +  CD25+ T Regulatory Cells in the Prevention of Autoimmune Myasthenia. J Immunol 175: 7898–7904.

    PubMed  CAS  Google Scholar 

  • Ly D, Mi QS, Hussain S et al (2006) Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4  +  CD25+ regulatory T cells. J Immunol 177: 3695–3704.

    PubMed  CAS  Google Scholar 

  • Makino Y, Kanno R, Ito T et al (1995) Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol 7: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda JL, Gapin L, Baron JL et al (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100: 8395–8400.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda JL, Naidenko OV, Gapin L et al (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192: 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Matsui S, Ahlers JD, Vortmeyer AO et al (1999) A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J.Immunol. 163: 184–193.

    PubMed  CAS  Google Scholar 

  • Mattner J, Debord KL, Ismail N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434: 525–529.

    Article  PubMed  CAS  Google Scholar 

  • McNab FW, Pellicci DG, Field K et al (2007) Peripheral NK1.1 NKT cells are mature and functionally distinct from their thymic counterparts. J Immunol 179: 6630–6637.

    PubMed  CAS  Google Scholar 

  • Moodycliffe AM, Nghiem D, Clydesdale G et al (2000) Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 1: 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Shapiro GI, Tan AR et al (2008) Phase I/II Study of GC1008: A human anti-transforming growth factor-beta (TGFb) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). J. Clin. Oncol. 26.

    Google Scholar 

  • Nakagawa R, Inui T, Nagafune I et al (2004) Essential role of bystander cytotoxic CD122  +  CD8+ T cells for the antitumor immunity induced in the liver of mice by alpha-galactosylceramide. J Immunol 172: 6550–6557.

    PubMed  CAS  Google Scholar 

  • Nieda M, Nicol A, Koezuka Y et al (2001) TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 97: 2067–2074.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa H, Kato T, Tanida K et al (2003) CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100: 10902–10906.

    Article  PubMed  CAS  Google Scholar 

  • O’Konek JJ, Illarionov P, Stewart Khursigara D et al (2011) Novel agonist of mouse and human iNKT cells reveals a new mechanism of tumor immunity. J Clin Invest 121: 683–694.

    Google Scholar 

  • Ortaldo JR, Young HA, Winkler-Pickett RT et al (2004) Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J Immunol 172: 943–953.

    PubMed  CAS  Google Scholar 

  • Osada T, Nagawa H, and Shibata Y (2004) Tumor-infiltrating effector cells of alpha-­galactosylceramide-induced antitumor immunity in metastatic liver tumor. J Immune Based Ther Vaccines 2: 7.

    Article  PubMed  CAS  Google Scholar 

  • Pak AS, Wright MA, Matthews JP et al (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1: 95–103.

    PubMed  CAS  Google Scholar 

  • Parekh VV, Singh AK, Wilson MT et al (2004) Quantitative and qualitative differences in the in vivo response of NKT cells to distinct alpha- and beta-anomeric glycolipids. J Immunol 173: 3693–3706.

    PubMed  CAS  Google Scholar 

  • Park SH, Weiss A, Benlagha K et al (2001) The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 193: 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Porcelli S, Yockey CE, Brenner MB et al (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Rauch J, Gumperz J, Robinson C et al (2003) Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J Biol Chem 278: 47508–47515.

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M et al (2008) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111: 5637–5645.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562.

    Article  PubMed  CAS  Google Scholar 

  • Schmieg J, Yang G, Franck RW et al (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 198: 1631–1641.

    Article  PubMed  CAS  Google Scholar 

  • Schmielau J, and Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression ofT-cell function in advanced cancer patients. Cancer Res 61: 4756–4760.

    PubMed  CAS  Google Scholar 

  • Shin Y, Hong C, Lee H et al (2010) NKT cell-dependent regulation of secondary antigen-specific, conventional CD4+ T cell immune responses. J Immunol 184: 5589–5594.

    Article  PubMed  CAS  Google Scholar 

  • Sidobre S, Naidenko OV, Sim BC et al (2002) The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 169: 1340–1348.

    PubMed  CAS  Google Scholar 

  • Silk JD, Salio M, Reddy BG et al (2008) Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180: 6452–6456.

    PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, and Ostrand-Rosenberg S (2005) Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65: 11743–11751.

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, and Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13: 459–463.

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, Pellicci DG et al (2002) Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99: 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191: 661–668.

    Article  PubMed  CAS  Google Scholar 

  • Song L, Asgharzadeh S, Salo J et al (2009) Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119: 1524–1536.

    Article  PubMed  CAS  Google Scholar 

  • Stetson DB, Mohrs M, Reinhardt RL et al (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198: 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  • Swann JB, Uldrich AP, van Dommelen S et al (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113: 6382–6385.

    Article  PubMed  CAS  Google Scholar 

  • Tahir SM, Cheng O, Shaulov A et al (2001) Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 167: 4046–4050.

    PubMed  CAS  Google Scholar 

  • Takaku S, Terabe M, Ambrosino E et al (2010) Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer 126: 1666–1674.

    PubMed  CAS  Google Scholar 

  • Takeda K, Hayakawa Y, Atsuta M et al (2000) Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int Immunol 12: 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Taraban VY, Martin S, Attfield KE et al (2008) Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol 180: 4615–4620.

    PubMed  CAS  Google Scholar 

  • Teng MW, Sharkey J, McLaughlin NM et al (2009a) CD1d-based combination therapy eradicates established tumors in mice. J Immunol 183: 1911–1920.

    Article  PubMed  CAS  Google Scholar 

  • Teng MW, Yue S, Sharkey J et al (2009b) CD1d activation and blockade: a new antitumor strategy. J Immunol 182: 3366–3371.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Ambrosino E, Takaku S et al (2009) Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clin Cancer Res 15: 6560–6569.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, and Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28: 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, and Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101: 277–348.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Matsui S, Noben-Trauth N et al (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology 1: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Matsui S, Park J-M et al (2003a) Transforming Growth Factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block Cytotoxic T Lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198: 1741–1752.

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Park JM, and Berzofsky JA (2003b) Role of IL-13 in negative regulation of anti-tumor immunity. Cancer Immunol and Immunotherapy 53: 79–85.

    Article  CAS  Google Scholar 

  • Terabe M, Swann J, Ambrosino E et al (2005) A nonclassical non-Va14Ja18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202: 1627–1633.

    Article  PubMed  CAS  Google Scholar 

  • Toura I, Kawano T, Akutsu Y et al (1999) Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J Immunol 163: 2387–2391.

    PubMed  CAS  Google Scholar 

  • Tupin E, Kinjo Y, and Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5: 405–417.

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Xing GW, Poles MA et al (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci USA 102: 1351–1356.

    Article  PubMed  CAS  Google Scholar 

  • Wu DY, Segal NH, Sidobre S et al (2003) Cross-presentation of Disialoganglioside GD3 to Natural Killer T Cells. J Exp Med 198: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa K, Exley MA, Jiang X et al (2006) Hyporesponsiveness to natural killer T-cell ligand alpha-galactosylceramide in cancer-bearing state mediated by CD11b  +  Gr-1+ cells producing nitric oxide. Cancer Res 66: 11441–11446.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura N, Sawada T, Furusawa M et al (2001) Expression of xenoantigen transformed human cancer cells to be susceptible to antibody-mediated cell killing. Cancer Lett 164: 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Zajonc DM, Maricic I, Wu D et al (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202: 1517–1526.

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Mattner J, Cantu C, 3 rd et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306: 1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond E, Preston S, Pappo O et al (2007) Beta-glucosylceramide: a novel method for enhancement of natural killer T lymphoycte plasticity in murine models of immune-mediated disorders. Gut 56: 82–89.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond E, Zangen SW, Pappo O et al (2009) Beta-glycosphingolipids improve glucose intolerance and hepatic steatosis of the Cohen diabetic rat. Am J Physiol Endocrinol Metab 296: E72-78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Terabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Konek, J.J., Berzofsky, J.A., Terabe, M. (2012). Immune Regulation of Tumor Immunity by NKT Cells. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_4

Download citation

Publish with us

Policies and ethics