Skip to main content

Catalytic Production of Liquid Hydrocarbon Transportation Fuels

  • Chapter
  • First Online:
Catalysis for Alternative Energy Generation

Abstract

Lignocellulosic biomass resources are abundant worldwide and have the potential to displace petroleum in the production of liquid fuels for the transportation sector of our society. Bioethanol, the dominant biofuel used today, suffers from low energy density and high solubility in water, properties that are undesirable for transportation fuels. The production, from lignocellulosic sources, of liquid hydrocarbon fuels that are chemically similar to those currently used in the transportation sector is a promising alternative to overcome the limitations of bioethanol. The transformation of highly functionalized biomass into oxygen-free liquid fuels can be carried out by gasification, pyrolysis, and aqueous-phase processing, as outlined in this chapter, with particular emphasis on the catalytic aspects of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APD/H:

Aqueous-phase dehydration/hydrogenation

APR:

Aqueous-phase reforming

BTL:

Biomass to liquids

CTL:

Coal to liquids

DALA:

δ-aminolevulinic acid

FTS:

Fischer–Tropsch synthesis

GTL:

Gas to liquids

GVL:

γ-Valerolactone

HMF:

Hydroxymethylfurfural

lge:

Liter of gasoline equivalent

MTHF:

Methyltetrahydrofuran

Ppm:

Parts per million

Syngas:

Synthesis gas

WGS:

Water–gas shift

References

  1. EIA Annual Energy Review (2008) http://www.eia.doe.gov/aer/pdf/aer.pdf. Accessed 7 Jul 2010

  2. Eurostat (2009) Statistical aspects of the energy economy in 2008, issue number 55/2009. http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-09-055/EN/KS-SF-09-055-EN.PDF. Accessed 7 Jul 2010

  3. Simonetti D, Dumesic JA (2008) Catalytic strategies for changing the energy content and achieving C–C coupling in biomass-derived oxygenated hydrocarbons. ChemSusChem 1:725–733

    Article  CAS  Google Scholar 

  4. Energy Information Administration, International Energy Outlook (2009) http://www.eia.doe.gov/oiaf/ieo/pdf/0484%282009%29.pdf. Accessed 7 Jul 2010

  5. BP (2009) Statistical review of world energy. http://bp.com/statisticalreview. Accessed 7 Jul 2010

  6. Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis report. http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html. Accessed 7 Jul 2010

  7. Worldwatch Institute Center for American Progress (2006) American energy: the renewable path to energy security. http://www.worldwatch.org/files/pdf/AmericanEnergy.pdf. Accessed 7 Jul 2010

  8. White House (2007) President Bush state on the union address. http://usgovinfo.about.com/b/2007/01/23/bush-delivers-his-seventh-state-of-the-union-address.htm. Accessed 7 Jul 2010

  9. Official Journal of the European Union (2003) Directive 2003/30/EC of the European Union Parliament. http://ec.europa.eu/energy/res/legislation/doc/biofuels/en_final.pdf. Accessed 7 Jul 2010

  10. Kreith F, Goswami DY (2007) Handbook of energy efficiency and renewable energy. CRC Press, Boca Raton

    Book  Google Scholar 

  11. Graziani M, Fornasiero P (2007) Renewable resources and renewable energy: a global challenge. CRC Press, Boca Raton

    Google Scholar 

  12. Klass DL (1998) Biomass for the renewable energy, fuels and chemicals. Academic, London

    Google Scholar 

  13. Chheda J, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbon to fuels and chemicals. Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  14. Ragauskas AJ et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  15. NSF (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries. http://www.ecs.umass.edu/biofuels/Images/Roadmap2-08.pdf. Accessed 7 Jul 2010

  16. US Energy Information Administration (2009) Petroleum navigator. http://tonto.eia.doe.gov/dnav/pet/hist/wtotworldw.htm. Accessed 7 Jul 2010

  17. Worldwatch Institute (2007) Biofuels for transport. Earthscan, London

    Google Scholar 

  18. Regalbuto JR (2009) Cellulosic biofuels—got gasoline? Science 325:822–824

    Article  Google Scholar 

  19. EPA/DOE sponsored web site. http://www.fueleconomy.gov/feg/flextech.shtml. Accessed 7 Jul 2010

  20. Hamelinck CN, Suurs RAA, Faaij APC (2005) International bioenergy transport costs and energy balance. Biomass Bioenergy 29:114–134

    Article  Google Scholar 

  21. Spath PL, Dayton DC (2003) Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. United States Department of Energy, National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy04osti/34929.pdf. Accessed 7 Jul 2010

  22. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DOE/GO-102005-2135, Oak Ridge National Laboratory. http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf. Accessed 7 Jul 2010

  23. Klass DL (2004) Biomass for the renewable energy and fuels. In: Cleveland CJ (ed) Encyclopedia of energy. Elsevier, London

    Google Scholar 

  24. Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioprod Biorefin 1:39–48

    Article  CAS  Google Scholar 

  25. Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:9200–9211

    Article  CAS  Google Scholar 

  26. US Department of Energy (2005) Feedstock composition glossary. http://www1.eere.energy.gov/biomass/feedstock_glossary.html#C. Accessed 7 Jul 2010

  27. US Department of Energy (2005) Feedstock composition glossary. http://www1.eere.energy.gov/biomass/feedstock_glossary.html#S. Accessed 7 Jul 2010

  28. International Energy Report (2007) Energy technology essentials, biofuel production. http://www.iea.org/techno/essentials2.pdf. Accessed 7 Jul 2010

  29. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  30. Carrol A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  Google Scholar 

  31. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  CAS  Google Scholar 

  32. Bozell JJ (2008) Feedstocks for the future: biorefinery production of chemicals from renewable carbon. Clean Soil Air Water 36:641–647

    Article  CAS  Google Scholar 

  33. Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2002) Strategic biorefinery analysis: analysis of biorefineries, technical report. US National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy06osti/35578.pdf. Accessed 7 Jul 2010

  34. Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products: status quo and future directions. Wiley-VCH, Weinheim

    Google Scholar 

  35. Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46:5056–5058

    Article  CAS  Google Scholar 

  36. Bridgwater AV (2001) Progress in thermochemical biomass conversion. Blackwell Science Ltd, Oxford

    Book  Google Scholar 

  37. Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. In: Centi G, van Santen RA (eds) Catalysis from renewables: from feedstock to energy production. Wiley, Weinheim

    Google Scholar 

  38. Kavalov B, Peteves SD (2005) European commission joint research centre. Status and perspectives of biomass-to-liquid fuels in the European Union. http://www.mangus.ro/pdf/Stadiul%20actual%20si%20perspectivele%20bio-combustibililor%20in%20Europa.pdf. Accessed 7 Jul 2010

  39. Milne TA, Evans RJ, Abatzoglou N (1998) Biomass gasifier tars: their nature, formation and conversion; Report No. NREL/TP-570-25357. National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy99osti/25357.pdf. Accessed 7 Jul 2010

  40. Boerrigter H, Van Der Drift A (2004) Biosyngas: description of R&D trajectory necessary to reach large-scale implementation of renewable syngas from biomass. Energy Research Centre of the Netherlands. http://www.ecn.nl/docs/library/report/2004/c04112.pdf. Accessed 7 Jul 2010

  41. Devi L, Ptasinski KJ, Janssen FJJG (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24:125–140

    Article  CAS  Google Scholar 

  42. Rapagna S, Jand N, Kiennemann A, Foscolo PU (2000) Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy 19:187–197

    Article  CAS  Google Scholar 

  43. Tomishige K, Asadullah M, Kunimori K (2004) Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catal Today 89:389–403

    Article  CAS  Google Scholar 

  44. Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173

    Article  CAS  Google Scholar 

  45. Mudge LK, Baker EG, Mitchell DH, Brown MD (1985) Catalytic steam gasification of biomass for methanol and methane production. J Solar Energy Eng 107:88–92

    Article  CAS  Google Scholar 

  46. Stahl K, Waldheim L, Morrim M, Johnsson U, Gardmark L (2004) Biomass IGCC at Värnamo, Sweden: past and future, GCEP Energy Workshop. http://gcep.stanford.edu/pdfs/energy_workshops_04_04/biomass_stahl.pdf. Accessed 7 Jul 2010

  47. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4048

    Article  CAS  Google Scholar 

  48. Caldwell L (1980) Selectivity in Fischer-Tropsch synthesis: review and recommendations for further work. http://www.fischer-tropsch.org/DOE/DOE_reports/81223596/pb81223596.pdf. Accessed 7 Jul 2010

  49. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241

    Article  CAS  Google Scholar 

  50. Boerrigter H, Zwart R (2004) High efficiency co-production of Fischer-Tropsch (FT) transportation fuels and substitute natural gas (SNG) from biomass. Energy Research Centre of the Netherlands. http://www.biosng.com/fileadmin/biosng/user/documents/reports/rx04042.pdf. Accessed 7 Jul 2010

  51. Steynberg A, Dry M (2004) Fischer-Tropsch technology. In: Steynberg A, Dry M (eds) Studies on surface science and catalysis, vol 152. Elsevier, New York

    Google Scholar 

  52. Martinez A, Lopez C (2005) The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl Catal A Gen 294:251–259

    Article  CAS  Google Scholar 

  53. Boerrigter H, Calis H, Slort D, Bodenstaff H, Kaandorp A, Den Uil D, Rabou L (2004) Gas cleaning for integrated biomass gasification (BG) and Fischer-Tropsch (FT) synthesis. Energy Research Centre of the Netherlands and Shell Global Solutions International. http://www.ecn.nl/docs/library/report/2004/c04056.pdf. Accessed 7 Jul 2010

  54. Choren Industries Press Release. http://www.choren.com/en/choren_industries/information_press/press_releases/?nid=195. Accessed 7 Jul 2010

  55. Lange JP (2001) Methanol synthesis: a short review of technology improvements. Catal Today 64:3–8

    Article  CAS  Google Scholar 

  56. Zhang R, Cummer K, Suby A, Brown RC (2005) Biomass-derived hydrogen from an air-blown gasifier. Fuel Process Technol 86:861–874

    Article  CAS  Google Scholar 

  57. Koppatz S, Pfeifer C, Rauch R, Hofbauer H, Marquard-Moellensted T, Specht M (2009) H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Process Technol 90:914–921

    Article  CAS  Google Scholar 

  58. Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Developments in direct thermochemical liquefaction of biomass: 1983–1990. Energy Fuel 5:399–410

    Article  CAS  Google Scholar 

  59. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  60. Diebold JP (2000) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils, Report No. NREL/SR-570-27613. National Renewable Energy Laboratory: Golden, CO. http://www.p2pays.org/ref/19/18946.pdf. Accessed 7 Jul 2010

  61. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  CAS  Google Scholar 

  62. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuel 21:1792–1815

    Article  CAS  Google Scholar 

  63. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A Gen 199:147–190

    Article  CAS  Google Scholar 

  64. Czernik S, French R, Feik C, Chornet E (2002) Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 41:4209–4215

    Article  CAS  Google Scholar 

  65. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  Google Scholar 

  66. Davda RR, Dumesic JA (2004) Renewable hydrogen by aqueous-phase reforming of glucose. Chem Commun 36–37

    Google Scholar 

  67. Ramesh K, Sharma N, Bakhshi N (1993) Catalytic upgrading of pyrolysis oil. Energy Fuel 7:306–314

    Article  Google Scholar 

  68. Adjaye JD, Katikameni SPR, Bakhshi NN (1996) Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Process Technol 48:115–143

    Article  CAS  Google Scholar 

  69. Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. Ind Eng Chem Res 43:2610–2618

    Article  CAS  Google Scholar 

  70. Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1:397–400

    Article  CAS  Google Scholar 

  71. Milne TA, Aglevor F, Davis MS, Deutch D, Johnson D (1997) Development in thermal biomass conversion. Blackie Academic and Professional, London

    Google Scholar 

  72. Renz M (2005) Ketonization of carboxylic acids by decarboxylation: mechanism and scope. Eur J Org Chem 6:979–988

    Article  Google Scholar 

  73. Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A Gen 320:122–133

    Article  CAS  Google Scholar 

  74. Hendren TS, Dooley KM (2003) Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones. Catal Today 85:333–351

    Article  CAS  Google Scholar 

  75. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421

    Article  CAS  Google Scholar 

  76. Klimkiewicz R, Fabisz E, Morawski I, Grabowska H, Syper L (2001) Ketonization of long chain esters from transesterification of technical waste fats. J Chem Technol Biotechnol 76:35–38

    Article  CAS  Google Scholar 

  77. Glinski M, Szymanski W, Lomot D (2005) Catalytic ketonization over oxide catalysts: transformations of various alkyl heptanoates. Appl Catal A Gen 281:107–113

    Article  CAS  Google Scholar 

  78. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Catalytic upgrading of bio-oils by ketonization. ChemSusChem 2:1121–1124

    Article  Google Scholar 

  79. Serrano-Ruiz JC, Dumesic JA (2009) Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C–C coupling reactions. Green Chem 11:1101–1104

    Article  CAS  Google Scholar 

  80. Werpy T, Petersen G (2004) Top value added chemicals from biomass. US Department of Energy, Office of Scientific and Technical Information. http://www.nrel.gov/docs/fy04osti/35523.pdf. Accessed 7 Jul 2010

  81. Gong CS, Du JX, Gao NJ, Tsao GT (2000) Coproduction of ethanol and glycerol. Appl Biochem Biotechnol 84:543–559

    Article  Google Scholar 

  82. Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. C R Chimie 7:65–90

    Article  CAS  Google Scholar 

  83. Paul SF (2001) US patent 6309430

    Google Scholar 

  84. Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–101

    Article  CAS  Google Scholar 

  85. Gulen D, Lucas M, Claus P (2005) Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal Today 102–103:166–172

    Article  Google Scholar 

  86. Chiu CW, Dasari MA, Suppes GJ, Sutterlin WR (2006) Dehydration of glycerol to acetol via catalytic reactive distillation. AICHE J 52:3543–3548

    Article  CAS  Google Scholar 

  87. Katryniok B, Paul S, Capron M, Dumeignil F (2009) Towards the sustainable production of acrolein by glycerol dehydration. ChemSusChem 2:719–730

    Article  CAS  Google Scholar 

  88. Pagliaro M, Rossi M (2008) Future of glycerol, new usages for a versatile raw material. RSC publishing, London

    Google Scholar 

  89. Wang H, Liu H (2007) Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. Catal Lett 117:62–67

    Article  CAS  Google Scholar 

  90. Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J Catal 249:328–337

    Article  CAS  Google Scholar 

  91. Ruiz VR, Velty A, Santos LL, Leyva-Perez A, Sabater MJ, Iborra S, Corma A (2010) Gold catalysts and solid catalysts for biomass transformations: valorization of glycerol and glycerol–water mixtures through formation of cyclic acetals. J Catal 271:351–357

    Article  CAS  Google Scholar 

  92. Karinen RS, Krause AOI (2006) New biocomponents from glycerol. Appl Catal A Gen 306:128–133

    Article  CAS  Google Scholar 

  93. Wiinikainen TS, Karinen RS, Krause AOI (2007) Conversion of glycerol into traffic fuels. In: Centi G, Van Santen RA (eds) Catalysis for renewables: from feedstocks to energy production. Wiley-VCH, Weinheim

    Google Scholar 

  94. Carbohydrate Economy Bulletin (2000) http://www.carbohydrateeconomy.org/library/admin/uploadedfiles/Carbohydrate_Economy_Bulletin_Volume_1_Numb_3.htm. Accessed 7 Jul 2010

  95. Soares RR, Simonetti DA, Dumesic JA (2006) Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed 45:3982–3985

    Article  CAS  Google Scholar 

  96. Alcala R, Mavrikakis M, Dumesic JA (2003) DFT studies for cleavage of C–C and C–O bonds in surface species derived from ethanol on Pt(111). J Catal 218:178–190

    Article  CAS  Google Scholar 

  97. Simonetti DA, Rass-Hansen J, Kunkes EL, Soares RR, Dumesic JA (2007) Coupling of glycerol processing with Fischer–Tropsch synthesis for production of liquid fuels. Green Chem 9:1073–1083

    Article  CAS  Google Scholar 

  98. Bartholomew CH, Farrauto RJ (2006) Fundamental of industrial catalytic processes. Wiley, Hoboken

    Google Scholar 

  99. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam, pp 34–69

    Google Scholar 

  100. Chheda J, Roman-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350

    Article  CAS  Google Scholar 

  101. Moreau C, Belgacem M, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30

    Article  CAS  Google Scholar 

  102. Roman-Leshkov Y, Chheda J, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937

    Article  CAS  Google Scholar 

  103. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450

    Article  CAS  Google Scholar 

  104. West RM, Liu ZL, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424

    Article  CAS  Google Scholar 

  105. Barret C, Chheda J, Huber GW, Dumesic JA (2006) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B Environ 66:111–118

    Article  Google Scholar 

  106. Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551

    Article  CAS  Google Scholar 

  107. West RM, Braden DJ, Dumesic JA (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments. J Catal 262:134–143

    Article  CAS  Google Scholar 

  108. Simonetti DA, Dumesic JA (2009) Catalytic production of liquid fuels from biomass-derived oxygenated hydrocarbons: catalytic coupling at multiple length scales. Catal Rev 51:441–484

    Article  CAS  Google Scholar 

  109. Pallassana V, Neurock M (2002) Reaction paths in the hydrogenolysis of acetic acid to ethanol over Pd(111), Re(0001), and PdRe alloys. J Catal 209:289–305

    Article  CAS  Google Scholar 

  110. Kunkes EL, Simonetti DA, Dumesic JA, Pyrz WD, Murillo LE, Chen JG, Buttrey DJ (2008) The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum–rhenium catalysts. J Catal 260:164–177

    Article  CAS  Google Scholar 

  111. Kunkes EL, Gurbuz E, Dumesic JA (2009) Vapour-phase C–C coupling reactions of biomass-derived oxygenates over Pd/CeZrO x catalysts. J Catal 266:236–249

    Article  CAS  Google Scholar 

  112. Fritzpatrick SW (1997) World patent 9640609

    Google Scholar 

  113. Leonard R (1956) Levulinic acid as a basic chemical raw material. Ind Eng Chem 48:1330–1341

    Article  Google Scholar 

  114. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239

    Article  Google Scholar 

  115. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577

    Article  CAS  Google Scholar 

  116. Ayoub P, Lange JP (2008) World Patent WO/2008/142127

    Google Scholar 

  117. Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT (2008) γ-valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242

    Article  CAS  Google Scholar 

  118. Lange JP, Vestering JZ, Haan RJ (2007) Towards bio-based Nylon: conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun 3488–3490

    Google Scholar 

  119. Manzer LE (2004) Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl Catal A Gen 272:249–256

    Article  CAS  Google Scholar 

  120. Heeres H, Handana R, Chunai D, Rasrendra CB, Girisuta B, Heeres HJ (2009) Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts. Green Chem 11:1247–1255

    Article  CAS  Google Scholar 

  121. Bond JQ, Martin-Alonso D, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Dumesic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Serrano-Ruiz, J.C., Dumesic, J.A. (2012). Catalytic Production of Liquid Hydrocarbon Transportation Fuels. In: Guczi, L., Erdôhelyi, A. (eds) Catalysis for Alternative Energy Generation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0344-9_2

Download citation

Publish with us

Policies and ethics