Skip to main content

Monocyte-derived Inflammatory Dendritic Cells in the Granuloma During Mycobacterial Infection

  • Chapter
  • First Online:
Current Topics in Innate Immunity II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 946))

Abstract

The monocyte-derived, inflammatory dendritic cell subset plays an important role during immune responses against infections. This review will focus on the complex, changing role of this subset during mycobacterial infection. Studies demonstrate that in addition to sustaining a systemic anti-mycobacterial response, the inflammatory dendritic cell subset present in Mycobacterium-induced granulomas also influences local immune regulation within the granuloma over the course of infection. This review will also survey the literature on how similar and different inflammatory dendritic cell subsets during other infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldridge, J. R., Jr., C. E. Moseley, D. A. Boltz, N. J. Negovetich, C. Reynolds, J. Franks, S. A. Brown, P. C. Doherty, R. G. Webster and P. G. Thomas. (2009) TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci U S A. 106, 5306-5311

    Article  PubMed  Google Scholar 

  • Allan, R. S., J. Waithman, S. Bedoui, C. M. Jones, J. A. Villadangos, Y. Zhan, A. M. Lew, K. Shortman, W. R. Heath and F. R. Carbone. (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 25, 153-162

    Article  PubMed  CAS  Google Scholar 

  • Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi and B. Chazaud. (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 204, 1057-1069

    Article  PubMed  CAS  Google Scholar 

  • Auffray, C., D. Fogg, M. Garfa, G. Elain, O. Join-Lambert, S. Kayal, S. Sarnacki, A. Cumano, G. Lauvau and F. Geissmann. (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 317, 666-670

    Article  PubMed  CAS  Google Scholar 

  • Auffray, C., D. K. Fogg, E. Narni-Mancinelli, B. Senechal, C. Trouillet, N. Saederup, J. Leemput, K. Bigot, L. Campisi, M. Abitbol, T. Molina, I. Charo, D. A. Hume, A. Cumano, G. Lauvau and F. Geissmann. (2009) CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med. 206, 595-606

    Article  PubMed  CAS  Google Scholar 

  • Auffray, C., M. H. Sieweke and F. Geissmann. (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 27, 669-692

    Article  PubMed  CAS  Google Scholar 

  • Badewa, A. P., L. J. Quinton, J. E. Shellito and C. M. Mason. (2005) Chemokine receptor 5 and its ligands in the immune response to murine tuberculosis. Tuberculosis (Edinb). 85, 185-195

    Article  PubMed  CAS  Google Scholar 

  • Bakri, Y., S. Sarrazin, U. P. Mayer, S. Tillmanns, C. Nerlov, A. Boned and M. H. Sieweke. (2005) Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood. 105, 2707-2716

    Article  PubMed  CAS  Google Scholar 

  • Belz, G. T., C. M. Smith, L. Kleinert, P. Reading, A. Brooks, K. Shortman, F. R. Carbone and W. R. Heath. (2004) Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci U S A. 101, 8670-8675

    Article  PubMed  CAS  Google Scholar 

  • Blease, K., B. Mehrad, N. W. Lukacs, S. L. Kunkel, T. J. Standiford and C. M. Hogaboam. (2001) Antifungal and airway remodeling roles for murine monocyte chemoattractant protein-1/CCL2 during pulmonary exposure to Asperigillus fumigatus conidia. J Immunol. 166, 1832-1842

    PubMed  CAS  Google Scholar 

  • Blease, K., B. Mehrad, T. J. Standiford, N. W. Lukacs, J. Gosling, L. Boring, I. F. Charo, S. L. Kunkel and C. M. Hogaboam. (2000) Enhanced pulmonary allergic responses to Aspergillus in CCR2−/− mice. J Immunol. 165, 2603-2611

    PubMed  CAS  Google Scholar 

  • Cheong, C., I. Matos, J. H. Choi, D. B. Dandamudi, E. Shrestha, M. P. Longhi, K. L. Jeffrey, R. M. Anthony, C. Kluger, G. Nchinda, H. Koh, A. Rodriguez, J. Idoyaga, M. Pack, K. Velinzon, C. G. Park and R. M. Steinman. (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell. 143, 416-429

    Article  PubMed  CAS  Google Scholar 

  • Combadiere, C., S. Potteaux, M. Rodero, T. Simon, A. Pezard, B. Esposito, R. Merval, A. Proudfoot, A. Tedgui and Z. Mallat. (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation. 117, 1649-1657

    Article  PubMed  CAS  Google Scholar 

  • Czuprynski, C. J., J. F. Brown, N. Maroushek, R. D. Wagner and H. Steinberg. (1994) Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J Immunol. 152, 1836-1846

    PubMed  CAS  Google Scholar 

  • Dahl, R., J. C. Walsh, D. Lancki, P. Laslo, S. R. Iyer, H. Singh and M. C. Simon. (2003) Regulation of macrophage and neutrophil cell fates by the PU. 1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol. 4, 1029-1036

    Article  PubMed  CAS  Google Scholar 

  • Dai, X. M., G. R. Ryan, A. J. Hapel, M. G. Dominguez, R. G. Russell, S. Kapp, V. Sylvestre and E. R. Stanley. (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 99, 111-120

    Article  PubMed  CAS  Google Scholar 

  • Dunay, I. R., R. A. Damatta, B. Fux, R. Presti, S. Greco, M. Colonna and L. D. Sibley. (2008) Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity. 29, 306-317

    Article  PubMed  CAS  Google Scholar 

  • Egen, J. G., A. G. Rothfuchs, C. G. Feng, N. Winter, A. Sher and R. N. Germain. (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity. 28, 271-284

    Article  PubMed  CAS  Google Scholar 

  • Eidsmo, L., R. Allan, I. Caminschi, N. van Rooijen, W. R. Heath and F. R. Carbone. (2009) Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol. 182, 3165-3172

    Article  PubMed  CAS  Google Scholar 

  • Ersland, K., M. Wuthrich and B. S. Klein. (2010) Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe. 7, 474-487

    Article  PubMed  CAS  Google Scholar 

  • Fleming, T. J., M. L. Fleming and T. R. Malek. (1993) Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol. 151, 2399-2408

    PubMed  CAS  Google Scholar 

  • Flores-Villanueva, P. O., J. A. Ruiz-Morales, C. H. Song, L. M. Flores, E. K. Jo, M. Montano, P. F. Barnes, M. Selman and J. Granados. (2005) A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med. 202, 1649-1658

    Article  PubMed  CAS  Google Scholar 

  • Fogg, D. K., C. Sibon, C. Miled, S. Jung, P. Aucouturier, D. R. Littman, A. Cumano and F. Geissmann. (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 311, 83-87

    Article  PubMed  CAS  Google Scholar 

  • Geissmann, F., S. Jung and D. R. Littman. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 19, 71-82

    Article  PubMed  CAS  Google Scholar 

  • Ginhoux, F., F. Tacke, V. Angeli, M. Bogunovic, M. Loubeau, X. M. Dai, E. R. Stanley, G. J. Randolph and M. Merad. (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol. 7, 265-273

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Mejia, M. E. and A. I. Doseff. (2009) Regulation of monocytes and macrophages cell fate. Front Biosci. 14, 2413-2431

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. D., S. L. Kurtz, N. W. Rigel, B. M. Gunn, S. Taft-Benz, J. P. Morrison, A. M. Fong, D. D. Patel, M. Braunstein and T. H. Kawula. (2009) The impact of chemokine receptor CX3CR1 deficiency during respiratory infections with Mycobacterium tuberculosis or Francisella tularensis. Clin Exp Immunol. 156, 278-284

    Article  PubMed  CAS  Google Scholar 

  • Hohl, T. M., A. Rivera, L. Lipuma, A. Gallegos, C. Shi, M. Mack and E. G. Pamer. (2009) Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 6, 470-481

    Article  PubMed  CAS  Google Scholar 

  • Holt, P. G., S. Haining, D. J. Nelson and J. D. Sedgwick. (1994) Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J Immunol. 153, 256-261

    PubMed  CAS  Google Scholar 

  • Humphreys, I. R., G. R. Stewart, D. J. Turner, J. Patel, D. Karamanou, R. J. Snelgrove and D. B. Young. (2006) A role for dendritic cells in the dissemination of mycobacterial infection. Microbes Infect. 8, 1339-1346

    Article  PubMed  CAS  Google Scholar 

  • Iijima, N., M. M. Linehan, S. Saeland and A. Iwasaki. (2007) Vaginal epithelial dendritic cells renew from bone marrow precursors. Proc Natl Acad Sci U S A. 104, 19061-19066

    Article  PubMed  Google Scholar 

  • Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu and R. M. Steinman. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 176, 1693-1702

    Article  PubMed  CAS  Google Scholar 

  • Jakubzick, C., F. Tacke, F. Ginhoux, A. J. Wagers, N. van Rooijen, M. Mack, M. Merad and G. J. Randolph. (2008) Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations. J Immunol. 180, 3019-3027

    PubMed  CAS  Google Scholar 

  • Jiao, X., R. Lo-Man, P. Guermonprez, L. Fiette, E. Deriaud, S. Burgaud, B. Gicquel, N. Winter and C. Leclerc. (2002) Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol. 168, 1294-1301

    PubMed  CAS  Google Scholar 

  • Kahnert, A., U. E. Hopken, M. Stein, S. Bandermann, M. Lipp and S. H. Kaufmann. (2007) Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis. 195, 46-54

    Article  PubMed  CAS  Google Scholar 

  • Kamath, A. T., S. Henri, F. Battye, D. F. Tough and K. Shortman. (2002) Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood. 100, 1734-1741

    PubMed  CAS  Google Scholar 

  • Kamphorst, A. O., P. Guermonprez, D. Dudziak and M. C. Nussenzweig. (2010) Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. J Immunol. 185, 3426-3435

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. J., H. E. Liang, B. Reizis and R. M. Locksley. (2008) Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity. 29, 819-833

    Article  PubMed  CAS  Google Scholar 

  • Khader, S. A., J. Rangel-Moreno, J. J. Fountain, C. A. Martino, W. W. Reiley, J. E. Pearl, G. M. Winslow, D. L. Woodland, T. D. Randall and A. M. Cooper. (2009) In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J Immunol. 183, 8004-8014

    Article  PubMed  CAS  Google Scholar 

  • Kurihara, T., G. Warr, J. Loy and R. Bravo. (1997) Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med. 186, 1757-1762

    Article  PubMed  CAS  Google Scholar 

  • Laouar, Y., T. Welte, X. Y. Fu and R. A. Flavell. (2003) STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity. 19, 903-912

    Article  PubMed  CAS  Google Scholar 

  • Leon, B. and C. Ardavin. (2008) Monocyte migration to inflamed skin and lymph nodes is differentially controlled by L-selectin and PSGL-1. Blood. 111, 3126-3130

    Article  PubMed  CAS  Google Scholar 

  • Leon, B., M. Lopez-Bravo and C. Ardavin. (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity. 26, 519-531

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y., J. Gong, M. Zhang, W. Xue and P. F. Barnes. (1998) Production of monocyte chemoattractant protein 1 in tuberculosis patients. Infect Immun. 66, 2319-2322

    PubMed  CAS  Google Scholar 

  • Lindquist, R. L., G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M. L. Dustin and M. C. Nussenzweig. (2004) Visualizing dendritic cell networks in vivo. Nat Immunol. 5, 1243-1250

    Article  PubMed  CAS  Google Scholar 

  • Liu, K. and M. C. Nussenzweig. (2010) Origin and development of dendritic cells. Immunol Rev. 234, 45-54

    Article  PubMed  CAS  Google Scholar 

  • Liu, K., G. D. Victora, T. A. Schwickert, P. Guermonprez, M. M. Meredith, K. Yao, F. F. Chu, G. J. Randolph, A. Y. Rudensky and M. Nussenzweig. (2009) In vivo analysis of dendritic cell development and homeostasis. Science. 324, 392-397

    Article  PubMed  CAS  Google Scholar 

  • Liu, K., C. Waskow, X. Liu, K. Yao, J. Hoh and M. Nussenzweig. (2007) Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol. 8, 578-583

    Article  PubMed  CAS  Google Scholar 

  • McCurley, N. and I. Mellman. (2010) Monocyte-derived dendritic cells exhibit increased levels of lysosomal proteolysis as compared to other human dendritic cell populations. PLoS One. 5, e11949

    Article  PubMed  CAS  Google Scholar 

  • McKenna, H. J., K. L. Stocking, R. E. Miller, K. Brasel, T. De Smedt, E. Maraskovsky, C. R. Maliszewski, D. H. Lynch, J. Smith, B. Pulendran, E. R. Roux, M. Teepe, S. D. Lyman and J. J. Peschon. (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 95, 3489-3497

    PubMed  CAS  Google Scholar 

  • Mohrs, K., A. E. Wakil, N. Killeen, R. M. Locksley and M. Mohrs. (2005) A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity. 23, 419-429

    Article  PubMed  CAS  Google Scholar 

  • Murray, E., R. Webb and M. Swann. (1926) A disease of rabbits characterized by a large mononuclear monocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes. J Pathol Bacteriol. 29, 407-439

    Article  Google Scholar 

  • Nahrendorf, M., F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J. L. Figueiredo, P. Libby, R. Weissleder and M. J. Pittet. (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 204, 3037-3047

    Article  PubMed  CAS  Google Scholar 

  • Naik, S. H., D. Metcalf, A. van Nieuwenhuijze, I. Wicks, L. Wu, M. O’Keeffe and K. Shortman. (2006) Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol. 7, 663-671

    Article  PubMed  CAS  Google Scholar 

  • Nakano, H., K. L. Lin, M. Yanagita, C. Charbonneau, D. N. Cook, T. Kakiuchi and M. D. Gunn. (2009) Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol. 10, 394-402

    Article  PubMed  CAS  Google Scholar 

  • Niess, J. H., S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman and H. C. Reinecker. (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 307, 254-258

    Article  PubMed  CAS  Google Scholar 

  • Park, S. J., M. D. Burdick, W. K. Brix, M. H. Stoler, D. S. Askew, R. M. Strieter and B. Mehrad. (2010) Neutropenia Enhances Lung Dendritic Cell Recruitment in Response to Aspergillus via a Cytokine-to-Chemokine Amplification Loop. J Immunol.

    Google Scholar 

  • Peters, W., H. M. Scott, H. F. Chambers, J. L. Flynn, I. F. Charo and J. D. Ernst. (2001) Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 98, 7958-7963

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J. (2006) Migratory dendritic cells: sometimes simply ferries? Immunity. 25, 15-18

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J., S. Beaulieu, S. Lebecque, R. M. Steinman and W. A. Muller. (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science. 282, 480-483

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J., K. Inaba, D. F. Robbiani, R. M. Steinman and W. A. Muller. (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 11, 753-761

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J., C. Jakubzick and C. Qu. (2008) Antigen presentation by monocytes and monocyte-derived cells. Curr Opin Immunol. 20, 52-60

    Article  PubMed  CAS  Google Scholar 

  • Ravindran, R., L. Rusch, A. Itano, M. K. Jenkins and S. J. McSorley. (2007) CCR6-dependent recruitment of blood phagocytes is necessary for rapid CD4 T cell responses to local bacterial infection. Proc Natl Acad Sci U S A. 104, 12075-12080

    Article  PubMed  CAS  Google Scholar 

  • Reljic, R., C. Di Sano, C. Crawford, F. Dieli, S. Challacombe and J. Ivanyi. (2005) Time course of mycobacterial infection of dendritic cells in the lungs of intranasally infected mice. Tuberculosis (Edinb). 85, 81-88

    Article  CAS  Google Scholar 

  • Robben, P. M., M. LaRegina, W. A. Kuziel and L. D. Sibley. (2005) Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med. 201, 1761-1769

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. G. (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 5, 39-47

    Article  PubMed  CAS  Google Scholar 

  • Rydstrom, A. and M. J. Wick. (2007) Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J Immunol. 178, 5789-5801

    PubMed  Google Scholar 

  • Sallusto, F. and A. Lanzavecchia. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 179, 1109-1118

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, H. A. and M. Sandor. (2010) The role of dendritic cells in mycobacterium-induced granulomas. Immunol Lett. 130, 26-31

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, H. A., P. D. Hulseberg, J. Lee, J. Prechl, P. Barta, N. Szlavik, J. S. Harding, Z. Fabry and M. Sandor. (2011) Dendritic cells in chronic mycobacterial granulomas restrict local anti-bacterial T cell response in a murine model. PLoS One. 5, e11453

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, O., K. Steinwede, N. Ding, M. Srivastava, R. Maus, F. Langer, J. Prokein, S. Ehlers, T. Welte, M. D. Gunn and U. A. Maus. (2008) Mice that overexpress CC chemokine ligand 2 in their lungs show increased protective immunity to infection with Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis. 198, 1044-1054

    Article  PubMed  CAS  Google Scholar 

  • Scott, H. M. and J. L. Flynn. (2002) Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun. 70, 5946-5954

    Article  PubMed  CAS  Google Scholar 

  • Serbina, N. V. and E. G. Pamer. (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 7, 311-317

    Article  PubMed  CAS  Google Scholar 

  • Serbina, N. V., T. Jia, T. M. Hohl and E. G. Pamer. (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 26, 421-452

    Article  PubMed  CAS  Google Scholar 

  • Serbina, N. V., W. Kuziel, R. Flavell, S. Akira, B. Rollins and E. G. Pamer. (2003a) Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity. 19, 891-901

    Article  CAS  Google Scholar 

  • Serbina, N. V., T. P. Salazar-Mather, C. A. Biron, W. A. Kuziel and E. G. Pamer. (2003b) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 19, 59-70

    Article  CAS  Google Scholar 

  • Steinman, R. M. and Z. A. Cohn. (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 137, 1142-1162

    Article  PubMed  CAS  Google Scholar 

  • Steinman, R. M. and Z. A. Cohn. (1974a) Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 139, 380-397

    Article  CAS  Google Scholar 

  • Steinman, R. M., D. S. Lustig and Z. A. Cohn. (1974b) Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med. 139, 1431-1445

    Article  CAS  Google Scholar 

  • Sunderkotter, C., T. Nikolic, M. J. Dillon, N. Van Rooijen, M. Stehling, D. A. Drevets and P. J. Leenen. (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 172, 4410-4417

    PubMed  Google Scholar 

  • Tacke, F., D. Alvarez, T. J. Kaplan, C. Jakubzick, R. Spanbroek, J. Llodra, A. Garin, J. Liu, M. Mack, N. van Rooijen, S. A. Lira, A. J. Habenicht and G. J. Randolph. (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 117, 185-194

    Article  PubMed  CAS  Google Scholar 

  • Tacke, F. and G. J. Randolph. (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology. 211, 609-618

    Article  PubMed  CAS  Google Scholar 

  • Tian, T., J. Woodworth, M. Skold and S. M. Behar. (2005) In vivo depletion of CD11c+ cells delays the CD4 +T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol. 175, 3268-3272

    PubMed  CAS  Google Scholar 

  • Tsou, C. L., W. Peters, Y. Si, S. Slaymaker, A. M. Aslanian, S. P. Weisberg, M. Mack and I. F. Charo. (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 117, 902-909

    Article  PubMed  CAS  Google Scholar 

  • Ulrichs, T. and S. H. Kaufmann. (2006) New insights into the function of granulomas in human tuberculosis. J Pathol. 208, 261-269

    Article  PubMed  CAS  Google Scholar 

  • Varol, C., L. Landsman, D. K. Fogg, L. Greenshtein, B. Gildor, R. Margalit, V. Kalchenko, F. Geissmann and S. Jung. (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 204, 171-180

    Article  PubMed  CAS  Google Scholar 

  • Volkman, H. E., H. Clay, D. Beery, J. C. Chang, D. R. Sherman and L. Ramakrishnan. (2004) Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol. 2, e367

    Article  PubMed  CAS  Google Scholar 

  • Wakim, L. M., J. Waithman, N. van Rooijen, W. R. Heath and F. R. Carbone. (2008) Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science. 319, 198-202

    Article  PubMed  CAS  Google Scholar 

  • Waskow, C., K. Liu, G. Darrasse-Jeze, P. Guermonprez, F. Ginhoux, M. Merad, T. Shengelia, K. Yao and M. Nussenzweig. (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 9, 676-683

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw, D. M. (1966) The intravascular lifespan of monocytes. Blood. 28, 455-464

    PubMed  CAS  Google Scholar 

  • Wolf, A. J., L. Desvignes, B. Linas, N. Banaiee, T. Tamura, K. Takatsu and J. D. Ernst. (2007a) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med.

    Google Scholar 

  • Wolf, A. J., B. Linas, G. J. Trevejo-Nunez, E. Kincaid, T. Tamura, K. Takatsu and J. D. Ernst. (2007b) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol. 179, 2509-2519

    CAS  Google Scholar 

  • Zhan, Y., Y. Xu, S. Seah, J. L. Brady, E. M. Carrington, C. Cheers, B. A. Croker, L. Wu, J. A. Villadangos and A. M. Lew. (2010) Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. J Immunol. 185, 2125-2133

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matyas Sandor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schreiber, H.A., Sandor, M. (2012). Monocyte-derived Inflammatory Dendritic Cells in the Granuloma During Mycobacterial Infection. In: Lambris, J., Hajishengallis, G. (eds) Current Topics in Innate Immunity II. Advances in Experimental Medicine and Biology, vol 946. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0106-3_16

Download citation

Publish with us

Policies and ethics