Skip to main content

Vapor Explosion Phenomena with Respect to Nuclear Reactor Safety Assessment

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science and Technology ((ANST,volume 12))

Abstract

An important concern in the analysis of a hypothetical nuclear power reactor accident is an understanding of the consequences of reactor core overheating, leading to fuel melting and subsequent interaction of hot molten fuel with coolant. If such molten fuel-coolant interaction (MFCI) is of limited extent, the resultant work potential is relatively benign. However, as illustrated in Figure 1, it can be envisioned that under certain conditions, core overheating may lead to a sequence of events resulting in the formation of an extensive amount of hot molten fuel in a liquid coolant environment, where such molten fuel may interact with the colder liquid coolant, causing it to vaporize as a result of local heat transfer. If the local heat transfer process is rapid enough (for example, due to fine-scale fuel fragmentation and intermixing with the coolant), the vapor generation process may be extremely fast, such that shock pressurization of the system occurs. If the pressure pulse generated is of sufficient strength, then severe damage to or failure of the reactor vessel may occur. Such a process is often referred to as a “vapor explosion”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witte, L. C. and Cox, J. E., “Thermal Explosion Hazards,” Advances in Nuclear Science and Technology, Vol. 7, pp 329–364, 1973.

    Google Scholar 

  2. Long, G. “Explosions of Molten Aluminum in Water: Cause and Prevention,” Metal Progress, Vol. 71, pp 107–112, 1957.

    Google Scholar 

  3. Epstein, L. F., “Recent Developments in the Study of Metal-Water Reactions,” Progress in Nuclear Energy, Series IV, pp 461–483, 1961.

    Google Scholar 

  4. Cronenberg, A. W. and Grolmes, M. A., “Fragmentation Modeling Relative to the Breakup of Molten UO2 in Sodium,” Journal of Nuclear Safety, Vol. 16, pp 683–700, 1975.

    Google Scholar 

  5. Ivins, R. O. et al, “Reaction of Water as Initiated by a Power Excursion in a Nuclear Reactor (TREAT),” Nuclear Science and Engineering, Vol. 25, pp 131–140, 1966.

    Google Scholar 

  6. McLain, H. A., “Potential Metal-Water Reactions in Light-Water Cooled Power Reactors,” USAEC Report No. ORNL-NSIC-23, August, 1968.

    Google Scholar 

  7. Buxton, L. D. and Nelson, L. S., “Steam Explosions,” Sandia Laboratory Report No. 74–0382 on Core Meltdown Review, August, 1975.

    Google Scholar 

  8. Reactor Safety Study, WASH-1400, U. S. Nuclear Regulatory Commission, October, 1975.

    Google Scholar 

  9. Rengstorff, G. W., Lemmon, A. W., Hoffman, A. H., “Review of Knowledge of Explosions Between Aluminum and Water,” Report to Aluminum Association, April 11, 1969.

    Google Scholar 

  10. Enger, T. and Hartman, D., “Rapid Phase Transformation During LNG Spillage on Water,” Proceedings of the 3rd Conference on Liquified Natural Gas, Washington, D. C., September, 1972.

    Google Scholar 

  11. Katz, D. L. and Sliepcevich, C. M., “LNG/Water Explosions: Cause and Effect,” Hydrocarbon Processing, pp 240–244, November, 1971.

    Google Scholar 

  12. Hatfield, G. W., “A Reactor Emergency with Resulting Improvements,” Mechanical Engineering, Vol. 77, pp 124–126, 1955.

    Google Scholar 

  13. Hurst, D. G., “The Accident to the NRX Reactor,” AECL-233, 1953.

    Google Scholar 

  14. Zinn, W. H., A Letter on the EBR-1 Fuel Meltdown, Nucleonics, Vol. 14, 1955.

    Google Scholar 

  15. Brittan, R. O., “Analysis of the EBR-I Core Meltdown,” Proceedings of 2nd UN Conference on Peaceful Uses of Atomic Energy, Vol. 12, Geneva, 1958.

    Google Scholar 

  16. Dietrich, J. R., “Experimental Determination of the Self-regulation and Safety of Operating Water-moderated Reactors,” Proceedings of the International Conference on Peaceful Uses of Atomic Energy, Vol. 13, pp 88–101, 1955.

    Google Scholar 

  17. Dietrich, J. R., “Experimental Investigation of the Self-limitation of Power Driving Reactivity Transients in a Subcooled, Water-moderated Reactor,” ANL-5323, 1954.

    Google Scholar 

  18. Thompson, T. J. and Beckerly, J. G., The Technology of Nuclear Reactor Safety 1, M. I. T. Press, Page 672, 1964.

    Google Scholar 

  19. Miller, R. W., Sola, A., McCardell, R. K., “Report of the SPERT-I Destructive Test Program on an Aluminum Plate-type Water-moderated Reactor,” IPO-16883, 1964.

    Book  Google Scholar 

  20. Higgins, H. M. and Schultz, R. D., “The Reaction of Metals with Water and Oxidizing Gases at High Temperatures,” IDO-28000, 1957.

    Google Scholar 

  21. Reactor Development Program Progress Report, ANL-6904, pp 102–104, May, 1964.

    Google Scholar 

  22. Miller, R. W. et al, “Experimental Results and Damage Effects of Destructive Test,” Transactions of the American Nuclear Society, Vol. 6, Page 138, 1963.

    Google Scholar 

  23. DiSalvo, R., “Phenomenological Investigation of Postulated Meltdown Accidents in Light-water Reactors,” Journal of Nuclear Safety, Vol. 18, pp 60–78, 1977.

    Google Scholar 

  24. Fauske, H. K., “CSNI Meeting on Fuel-Coolant Interactions,” Journal of Nuclear Safety, Vol. 16, pp 436–443, 1975.

    Google Scholar 

  25. Tong, L. S. and Bennett, G. L., “NRC Water-Reactor Safety Research Program,” Journal of Nuclear Safety, Vol. 18, pp 1–40, 1977.

    Google Scholar 

  26. Kelber, C. N., “Phenomenological Research in LMFBR Accident Analysis,” Journal of Nuclear Safety, Vol. 14, 1973.

    Google Scholar 

  27. Hicks, E. P. and Menzies, D. C., “Theoretical Studies on the Fast Reactor Maximum Accident,” Proceedings, Conference on Safety, Fuels, and Core Design in Large Fast Power Reactor, ANL-7120, 1965.

    Google Scholar 

  28. Judd, A. M., “Calculation of the Thermodynamic Efficiency of Molten Fuel-Coolant Interaction,” Transactions of the American Nuclear Society, Vol. 13, Page 369, 1970.

    Google Scholar 

  29. Fauske, H. K., “On the Mechanisms of Uranium Dioxide-Sodium Explosive Interactions,” Nuclear Science and Engineering, Vol. 51, pp 95–101, 1973.

    Google Scholar 

  30. Fauske, H. K., “The Role of Energetic Mixed Oxide Fuel-Sodium Thermal Interactions in LMFBR Safety,” Proceedings of the 3rd CSNI Specialist Meeting on Na-Fuel Interactions in Fast Reactors, Tokyo, Japan, March, 1976.

    Google Scholar 

  31. Armstrong, D. R., Testa, F. T., Raridon, D. C., “Interaction of Sodium with Molten UO2 and Stainless Steel Using a Dropping Mode of Contact,” ANL-7890, December, 1971.

    Google Scholar 

  32. Armstrong, D. R., Goldfuss, G. T., Gebner, R. H., “Explosive Interaction of Molten UO2 and Liquid Sodium,” ANL-76–24, March, 1976.

    Google Scholar 

  33. Anderson, R. P. and Armstrong, D. R., “R-22 Vapor Explosions,” Annual ASME Winter Meeting: Nuclear Reactor Safety Heat Transfer Section, Atlanta, Georgia, November 27-December 2, 1977, pp 31–45.

    Google Scholar 

  34. Board S. J., Hall, R. W., Brown, G. E., “The Rate of Spontaneous Nucleation in Thermal Explosion: Freon/Water Experiments,” RD/BIN-3007, June, 1974.

    Google Scholar 

  35. Henry, R. E., Fauske, H. K., McUmber, L. M., “Vapor Explosion Experiments with Simulant Fluids,” Proceedings of the ANS Conference on Fast Reactor Safety, Chicago, Illinois, October, 1976.

    Google Scholar 

  36. Henry, R. E. and McUmber, L. M., “Vapor Explosive Behavior at Elevated Ambient Pressure,” ANL-77–34, pp 113–120, 1976.

    Google Scholar 

  37. Henry, R. E. and Fauske, H. K., “Nucleation Characteristics in Physical Explosion,” Proceedings of 3rd Specialist Meeting on Na/Fuel Interaction in Fast Reactors, Tokyo, Japan, March 22–26, 1976, pp 596–623.

    Google Scholar 

  38. Board, S. J. and Hall, R. W., “Recent Advances in Understanding Large-scale Vapor Explosions,” Proceedings of 3rd Specialist Meeting on Na/Fuel Interactions in Fast Reactors, Tokyo, Japan, March 22–26, 1976, pp 249–284.

    Google Scholar 

  39. Spiegler, P., et al, “Onset of Stable Film Boiling and the Foam Limit,” International Journal of Heat and Mass Transfer, Vol. 6, pp 987–994, 1963.

    Article  Google Scholar 

  40. Gunnerson, F. S. and Cronenberg, A. W., “A Correlation for the Leidenfrost Temperature for Spherical Particles and Its Application to FCI Analysis,” Transactions of the American Nuclear Society, Vol. 25, pp 381–383, 1977.

    Google Scholar 

  41. Henry, R. E., “A Correlation for the Minimum Film Boiling Temperature,” 14th National Heat Transfer Conference, AICHE-ASME, Atlanta, Georgia, 1973.

    Google Scholar 

  42. Gunnerson, F. S. and Cronenberg, A. W., “On the Thermodynamic Superheat Limit for Liquid Metals and Its Relation to the Leidenfrost Temperature,” (submitted to Journal of Heat Transfer, 1978).

    Google Scholar 

  43. Waldram, K. L., “Interaction of Low Boiling Point Liquid Drops on a Hot Liquid Surface,” M. S. Thesis, Northwestern University, Evanston, Illinois, April, 1974.

    Google Scholar 

  44. Hall, W. B., “Bubble Growth with Acoustic Loading,” (Calculations presented at OECD CSNI Meeting, Argonne National Laboratory, Argonne, Illinois, December 8–9, 1977).

    Google Scholar 

  45. Cho, D. H., Fauske, H. K., Grolmes, M. A., “Some Aspects of Mixing in Large-Mass, Energetic Fuel-Coolant Interactions,” Proceedings of the ANS Conference on Fast Reactor Safety, Chicago, Illinois, October, 1976.

    Google Scholar 

  46. Henry, R. E. and Cho, D. H., “An Evaluation of the Potential for Energetic Fuel-Coolant Interactions in Hypothetical LMFBR Accidents,” Annual ASME Winter Meeting, Nuclear Reactor Safety Heat Transfer Section, Atlanta, Georgia, November 27-December 2, 1977, pp223–237.

    Google Scholar 

  47. Chalmers, B., Principles of Solidification, John Wiley Publishing Company, New York, 1964.

    Google Scholar 

  48. Turnbull, D., “Formation of Crystal Nuclei in Liquid Metals,” Journal of Applied Physics, Vol. 21, pp 1022–1028, 1950.

    Article  Google Scholar 

  49. Cronenberg, A. W. and Fauske, H. K., “UO Solidification Associated with Rapid Quenching in Liquid Sodium,” Journal of Nuclear Materials, Vol. 52, pp 24–32, 1974.

    Article  Google Scholar 

  50. Cronenberg, A. W. and Coats, R. L., “Solidification Phenomena for UO2, UC, and UN Relative to Quenching in Na Coolant,” Nuclear Engineering and Design, Vol. 36, pp 261–272, 1976.

    Article  Google Scholar 

  51. Ladisch, R., “Comment on Fragmentation of UO2 by Thermal Stress and Pressurization,” Nuclear Engineering and Design, Vol. 43, pp 327–328, 1977.

    Article  Google Scholar 

  52. Board, S. J., Hall, R. W. and Hall, R. S., “Detonation of Fuel Coolant Explosions,” Nature, Vol. 254, pp 319–321, March, 1975.

    Article  Google Scholar 

  53. Board, S. J. and Caldarola, L., “Fuel-Coolant Interaction in Fast Reactors,” Annual ASME Winter Meeting, Nuclear Reactor Safety Heat Transfer Section, Atlanta, Georgia, November 27-December 2, 1977, pp 195–222.

    Google Scholar 

  54. Simpkins, P. G. and Bales, E. L., “Water-drop Response to Sudden Accelerations,” Journal of Fluid Mechanics, Vol. 55, Page 629, 1972.

    Article  Google Scholar 

  55. Bankoff, S. G. and Jo, J. H., “On the Existence of Steady-State Fuel Coolant Thermal Detonation Waves,” Northwestern University Report NU-2512–8, 1976.

    Google Scholar 

  56. Bankoff, S. G., “Vapor Explosion: A Critical Review,” Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada, August, 1978.

    Google Scholar 

  57. Patel, P. D. and Theofanous, T. G., “Fragmentation Requirements for Detonating Vapor Explosions,” Purdue University Report PNE-78–122, 1978.

    Google Scholar 

  58. Williams, D. C., “A Critique of the Board-Hall Model for Thermal Detonations in UO2-Na Systems,” Proceedings of the ANS Conference on Fast Reactor Safety, Chicago, Illinois, October, 1976.

    Google Scholar 

  59. Sharon, A. and Bankoff, S. G., “Propagation of Shock Waves Through a Fuel/Coolant Mixture; Part A: Boundary Layer Stripping Mechanism,” Northwestern University Report COO-2512–12, March, 1978.

    Google Scholar 

  60. Ivins, R. O., “Interactions of Fuel, Cladding, and Coolant,” ANL-7399, pp 162–165, 1967.

    Google Scholar 

  61. Hinze, J. O., “Forced Deformations of Viscous Liquid Globules,” Applied Scientific Research (A), 1, pp 263–272, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  62. Cho, D. H. and Gunther, W.H., “Fragmentation of Molten Materials Dropped into Water,” Transactions of the American Nuclear Society, Vol. 16, pp 185–186, 1973.

    Google Scholar 

  63. Lazarrus, J., Navarre, J. P., Kottowski, H. M., “Thermal Interaction Experiments in a Channel Geometry Using Al2O3 and Na,” Proceedings of 2nd CSNI Specialist Meeting on Na-Fuel Interactions in Fast Reactors, Ispra, Italy, November, 1973.

    Google Scholar 

  64. Paoli, R. M. and Mesler, R. B., “Explosion of Molten Lead in Water,” Proceedings of the Conference on Highspeed Photography, Stockholm, Sweden, 1968.

    Google Scholar 

  65. Darby, K. et al, “The Thermal Interaction Between Water and Molten Aluminum under Impact Conditions in a Strong Tube,” Proceedings of the International Conference on Fast Reactors for Safe and Reliable Operation, Karlsruhe, Germany, October, 1972.

    Google Scholar 

  66. Board, S. J., Farmer, C. L., Poole, D. H., “Fragmentation in Thermal Explosions,” International Journal of Heat and Mass Transfer, Vol. 17, pp 331–339, 1974.

    Article  Google Scholar 

  67. Flory, K., Paoli, R. M., Mesler, R. B., “Molten Metal-Water Explosions,” Chemical Engineering Progress, Vol. 65, pp 50–54, December, 1969.

    Google Scholar 

  68. Swift, D. and Baker, L., Reactor Development Program Report, ANL-7152, pp 87–96, January, 1965.

    Google Scholar 

  69. Mizuta, H., “Fragmentation of Uranium Dioxide after Molten UO2-Na Interaction,” Nuclear Science and Technology, Vol. 11, pp 480–487, 1974.

    Article  Google Scholar 

  70. Martinson, Z. R., “Behavior of 5-inch long, 1/4 OD Zircaloy-2 Oxide Fuel Rods Subjected to High Energy Power Bursts,” IN-ITR-107, August, 1969.

    Google Scholar 

  71. Wright, R. W. and Humberstone, G. H., “Dispersal and Pressure Generation by Water Impact upon Molten Aluminum,” Transactions of the American Nuclear Society, Vol. 9, Page 305, 1966.

    Google Scholar 

  72. Coffield, R. D. and Wattelet, P. L., “An Analytical Evaluation of Fuel Failure Propagation for the Fast Flux Test Facility,” Report of AEC Contract AT (45–1)-2171, Task No. 1, WARD, Hanford Engineering Laboratory, November, 1970.

    Google Scholar 

  73. Bradley, R. H. and Witte, L. C., “Explosive Interaction of Molten Metals Injected into Water,” Nuclear Science and Engineering, Vol. 48, pp 387–396, 1972.

    Google Scholar 

  74. Colgate, S. A. and Sigurgeirsson, T., “Dynamic Mixing of Water and Lava,” Nature, Vol. 244, pp 552–555, August, 1973.

    Article  Google Scholar 

  75. Roberts, K. V., “Theoretical Calculations of Fuel-Coolant Interactions,” CREST Specialist Meeting on Sodium Fuel Interactions, Grenoble, France, January, 1972.

    Google Scholar 

  76. Bruckner, U. and Unger, H., “Analyses Physiklalischer Vorgange bei Thermodynamisehen Mischreaktionen,” Universität Stuttgart, Institut fur Kernenergetik, IKE-Bericht, No. 6–69, 1973.

    Google Scholar 

  77. Buchanan, D. J., “A Model for Fuel-Coolant Interactions,” Journal of Physics, D-7, pp 1441–1457, 1974.

    Google Scholar 

  78. Buchanan, D. J. and Dullforce, T. A., “Mechanism for Vapour Expansions,” Nature, Vol. 245, pp 32–34, September, 1973.

    Article  Google Scholar 

  79. Caldarola, L. and Kastenberg, W. E., “On the Mechanism of Fragmentation during Molten Fuel-Coolant Thermal Interactions,” Proceedings of American Nuclear Society Conference on Fast Reactor Safety, Los Angeles, 1974.

    Google Scholar 

  80. Vaughan, G. J., Caldarola, L., Todreas, N. E., “A Model for Fuel Fragmentation during Molten Fuel/Coolant Thermal Interactions,” Proceedings of the American Nuclear Society Conference on Fast Reactor Safety, Chicago, Illinois, October, 1976.

    Google Scholar 

  81. Stevens, J. W. and Witte, L. C., “Destabilization of Vapor Film Boiling Around Spheres,” International Journal of Heat and Mass Transfer, Vol. 16, pp 669–678, 1973.

    Article  Google Scholar 

  82. Benz, R., Frohlich, G., Unger, H., “Fragmentationsverlauf heisser flussiger Schmelze in Wasser, beschrieben mit einem Dampfblasenkollapsmodell,” Universität Stuttgart, Institut für Kernenergetik, Reaktortagung, Düsseldorf, 1976.

    Google Scholar 

  83. Benz, R. et al, “Theoretische Studien zur Damfexplosion,” and (2), “Technischer Fachbericht zum Forschungsvorhaben,” BMFT RS76, April, 1976.

    Google Scholar 

  84. Benz, R., Fröhlich, G. and Unger, H., “Ein Dampfblasenkollapsmodell (DBK-Modell) zur Beschreibung des Fragmentationsverlaufs heisser, flussiger Schmelze in Wasser,” Atomkernenergie, Vol. 29, pp 261–265, 1977.

    Google Scholar 

  85. Bevis, M. K. and Fielding, P. J., “Numerical Solution of Incompressible Bubble Collapse with Jetting,” in Moving Boundary Problem in Heat Flow and Diffusion, J. R. Ockendon and W. R. Hodgkins, England, Clarendon Pewaa, 1975.

    Google Scholar 

  86. Christiansen, J. P., “Numerical Simulation of Hydrodynamics by the Method of Point Vortices,” Journal of Computational Physics, Vol. 13, pp 363–379, 1973.

    Article  MATH  Google Scholar 

  87. Dullforce, T. A., Buchanan, D. J., Peckover, R. S., “Self-triggering and Small-scale Fuel-Coolant Interactions: Experiment,” Journal of Physical Dynamics, Vol. 9, pp 1295–1303, 1976.

    Google Scholar 

  88. Bjorkquist, G. M., “An Experimental Investigation of the Fragmentation of Molten Metals in Water,” TID-26826, 1975.

    Google Scholar 

  89. Benjamin, T. B. and Ellis, A. T., “The Collapse of Cavitation Bubbles and the Pressure Thereby Produced Against Solid Boundaries,” Philosophical Transactions of the Royal Society of London (A), Page 221, 1966.

    Google Scholar 

  90. Peckover, R. S., Buchanan, D. J., Ashby, D. E. T. F., “Fuel-Coolant Interactions in Submarine Volcanism,” Nature, Vol. 245, pp 307–308, October, 1973.

    Article  Google Scholar 

  91. Caldarola, L., “A Theoretical Model for Molten Fuel-Sodium Interaction on a Nuclear Fast Reactor,” Nuclear Engineering and Design, Vol. 22, pp 175–211, 1972.

    Article  Google Scholar 

  92. Caldarola, L., “A Theoretical Model with Variable Masses for the Molten Fuel-Sodium Thermal Interaction in a Nuclear Reactor,” Nuclear Engineering and Design, Vol. 34, pp 181–201, 1975.

    Article  Google Scholar 

  93. Schlechtendahl, S., “Sieden des Kuhlmittels in Natrium Gekühlten Schnellen Reaktoven,” Karlsruhe Nuclear Research Center Report, KFK 1020, June, 1969.

    Google Scholar 

  94. Farahat, M. M., “Transient-Boiling Heat Transfer from Spheres to Sodium,” ANL-7909, January, 1972.

    Google Scholar 

  95. Farahat, M. M., Armstrong, D. R., Eggen, D. T., “Pool Boiling in Subcooled Sodium at Atmospheric Pressure,” Nuclear Science and Engineering, Vol. 53, pp 240–253, 1974.

    Google Scholar 

  96. Zyszkowski, W., “Experimental Investigation of Fuel-Coolant Interaction,” Nuclear Technology, Vol. 33, pp 40–59, April, 1977.

    Google Scholar 

  97. Fröhlich, G., Schmidt, E., Osswald, H., “Dampfexplos-ionen bei Thermischen Reaktionen von zwei Flüssigkeiten,” IKE Report K-44, July, 1973.

    Google Scholar 

  98. Shiralkar, G. S. and Todreas, N. E., “An Investigation of Fragmentation of Molten Metals Dropped into Cold Water,” MIT Report No. CQO-2781–7TR, November, 1976.

    Book  Google Scholar 

  99. Witte, L. C. et al, “Heat Transfer and Fragmentation During Molten-Metal/Water Interactions,” Journal of Heat Transfer, Vol. 95, pp 521–527, November, 1973.

    Article  Google Scholar 

  100. Plesset, M. S. and Chapman, R. B., “Collapse of an Initially Spherical Vapor Cavity in the Neighborhood of a Solid Boundary,” Journal of Fluid Mechanics, Vol. 47, pp 283–290, 1970.

    Article  Google Scholar 

  101. Beer, H., “Beitrag zur Warmeubertragung beim Sieden,” Progress in Heat and Mass Transfer, Vol. 2, Oxford, Pergamon Press, pp 311–370, 1969.

    Google Scholar 

  102. Fröhlich, G., Müller, G. and Unger, H., “Experiments with Water and Hot Melts of Lead,” Journal of Non-Equilibrium Thermodynamics, Vol. 1, pp 91–103, 1976.

    Article  Google Scholar 

  103. Zyszkowski, W., “On the Transplosion Phenomena and the Leidenfrost Temperature for Molten Copper-Water Thermal Interaction,” International Journal of Heat and Mass Transfer, Vol. 19, pp 623–625, 1976.

    Google Scholar 

  104. Hess, P. D. and Brondyke, K. J., “Causes of Molten Aluminum-Water Explosions and their Prevention,” Metal Progress, Vol. 95, pp 93–100, April, 1969.

    Google Scholar 

  105. Sallack, J. A., “On Investigation of Explosions in the Soda Smelt Dissolving Operation, ” Pulp Paper Magazine of Canada, 56, pp 114–118, 1955.

    Google Scholar 

  106. Brauer, F. E., Green, N. W., Mesler, R. B., “Metal/Water Explosions,” Nuclear Science and Engineering, Vol. 31, pp 551–554, 1968.

    Google Scholar 

  107. Schins, H., “The Consistent Boiling Model for Fragmentation in Mild Thermal Interaction-Boundary Conditions,” WURATOM Report, EUR/c-IS/699/73e, 1973.

    Google Scholar 

  108. Kazimi, M. S., “Theoretical Studies of Some Aspects of Molten Fuel-Coolant Thermal Interactions,” Science Doctorate Thesis, MIT, Cambridge, Massachusetts, May, 1973.

    Google Scholar 

  109. Bernath, L., “Theory of Bubble Formation in Liquids,” Industrial and Engineering Chemistry, Vol. 44, pp 1310–1313, 1951.

    Article  Google Scholar 

  110. Cronenberg, A. W. and Grolmes, M. A., “A Review of Fragmentation Models Relative to Molten UO2 Breakup When Quenched in Sodium Coolant,” ASME Paper 74-WA/HT-42, 1974.

    Google Scholar 

  111. Flynn, H. G., “Physics of Acoustic Cavitation in Liquids,” Physical Acoustics, Vol. 1 (B), New York, W. P. Mason, Academic Press, 1964.

    Google Scholar 

  112. Epstein, M., “A New Look at the Cause of Thermal Fragmentation,” Transactions of the American Nuclear Society, Vol. 19, Page 249, 1974.

    Google Scholar 

  113. Epstein, M., “Thermal Fragmentation—A Gas Release Phenomenon,” Nuclear Science and Engineering, Vol. 55, pp 462–467, 1974.

    Google Scholar 

  114. Buxton, L. D. and Nelson, L. S., “Impulse Initiated Gas Release—A Possible Trigger for Vapor Explosions,” Transactions of the American Nuclear Society, Vol. 26, Page 398, 1977.

    Google Scholar 

  115. Nelson, L. S. and Buxton, L. D., “The Thermal Interaction of Molten LWR Core Materials with Water,” Transactions of the American Nuclear Society, Vol. 26, Page 397, 1977.

    Google Scholar 

  116. Fast, J. D., “Interaction of Metals and Gases,” Thermodynamics and Phase Relations, Vol. 1, New York, Academic Press, 1965.

    Google Scholar 

  117. Johnson, G. W. and Shuttleworth, R., “The Solubility of Krypton in Liquid Lead, Tin and Silver,” Philosophical Magazine, Vol. 4, Page 957, 1959.

    Article  Google Scholar 

  118. Gunnerson, F. S. and Cronenberg, A. W., “A Prediction of the Inert Gas Solubilities in Stoichiometric Molten UO2,” Journal of Nuclear Materials, Vol. 58, pp 311–320, 1975.

    Article  Google Scholar 

  119. McLain, H. A., “Potential Metal-Water Reactions in Light-Water-Cooled Power Reactors,” ORNL-NSIC-233, August, 1968.

    Google Scholar 

  120. Zyszkowski, “Experimental Investigation of Fuel-Coolant Interaction,” Nuclear Technology, Vol. 33, pp 40–59, April, 1977.

    Google Scholar 

  121. Hsiao, K. H. et al, “Pressurization of a Solidifying Sphere,” Journal of Applied Mechanics, Vol. 39, pp 71–77, 1972.

    Article  Google Scholar 

  122. Cronenberg, A. W., Chawla, T. C., Fauske, H. K., “A Thermal Stress Mechanism for the Fragmentation of Molten UO2 Upon Contact with Sodium Coolant,” Nuclear Engineering and Design, Vol. 30, pp 443–454, 1974.

    Article  Google Scholar 

  123. Knapp, R. B. and Todreas, N. E., “Thermal Stress Initiated Fracture as a Fragmentation Mechanism in UO2-Na Fuel-Coolant Interaction,” Nuclear Engineering and Design, Vol. 35, pp 69–76, 1975.

    Article  Google Scholar 

  124. Wright, R. W. and Humberstone, G. H., “Dispersal and Pressure Generation by Water Impact upon Molten Aluminum,” Transactions of American Nuclear Society, Vol. 9, Page 305, 1966.

    Google Scholar 

  125. Zyszkowski, W., “Thermal Interaction of Molten Copper with Water,” International Journal of Heat and Mass Transfer, Vol. 18, pp 271–287, 1975.

    Article  Google Scholar 

  126. SL-1 Project, Final Report of the SL-1 Recovery Operation, IDO-19311, 1962.

    Google Scholar 

  127. Boudreau, J. E. and Jackson, J. F., “Recriticality Considerations in LMFBR Accidents,” Proceedings of the ANS Conference on Fast Reactor Safety, Beverly Hills, California, April, 1974, pp 1265–1289.

    Google Scholar 

  128. Wright, R. W. et al, “Summary of Autoclave TREAT Tests on Molten Fuel Coolant Interactions,” Proceedings of the American Nuclear Society Conference on Fast Reactor Safety, Beverly Hills, California, April, 1976, pp 254–267.

    Google Scholar 

  129. Epstein, M. and Cho, D. H., “Fuel Vaporization and Quenching by Cold Sodium; Interpretation of TREAT Test S-11,” Proceedings of the American Nuclear Society Conference on Fast Reactor Safety, Beverly Hills, California, April, 1976, pp 268–278.

    Google Scholar 

  130. Dickerman, C. E., “U. S. Studies on LMFBR Fuel Behavior under Accident Conditions,” Journal of Nuclear Safety, Vol. 14, pp 452–460, 1973.

    Google Scholar 

  131. Cronenberg, A. W. and Grolmes, M. A., “An Assessment of the Coolant Voiding Dynamics Following the Failure of Preirradiated IMFBR Fuel Pins,” Nuclear Technology, Vol. 27, pp 395–410, 1975.

    Google Scholar 

  132. Cronenberg, A. W., “A Thermohydrodynamic Model for Molten UO2-Na Interactions, Pertaining to Fast Reactor Fuel Failure Accidents,” ANL-7947, June, 1972.

    Book  Google Scholar 

  133. Cronenberg, A. W., Fauske, H. K., Eggen, D. T., “Analysis of the Coolant Behavior Following Fuel Failure and Molten Fuel-Sodium Interaction in a Fast Nuclear Reactor,” Nuclear Science and Engineering, Vol. 50, pp 53–62, 1973.

    Google Scholar 

  134. Amblard, M. et al, “Out-of-Pile Studies in France on Sodium-Fuel Interaction,” Proceedings of the American Nuclear Society Conference on Fast Reactor Safety, Beverly Hills, California, April 2–4, pp 910–921, 1974.

    Google Scholar 

  135. Amblard, M., “Preliminary Results of a Contact Between 4Kg of Molten UO2 and Liquid Sodium,” Proceedings of the 3rd Specialist Meeting on Na/Fuel Interaction in Fast Reactors, Tokyo, Japan, March 26–27, 1976, pp 545–560.

    Google Scholar 

  136. Cho, D. H., Ivins, R. O., Wright, R. W., “A Rate-Limited Model of Molten-Fuel/Coolant Interactions: Model Development and Preliminary Calculations,” ANL-7919, March, 1972.

    Google Scholar 

  137. Wright, R. W. and Cho, D. H., “Acoustic and Inertial Constraints in Molten Fuel-Coolant Interactions,” Transactions of the American Nuclear Society, Vol. 13, Page 658, 1970.

    Google Scholar 

  138. Gunnerson, F. S. and Cronenberg, A. W., “A Thermodynamic Prediction of the Temperature for Film Boiling Destabilization and Its Relation to Vapor Explosion Phenomena,” Transactions of the American Nuclear Society, 1978.

    Google Scholar 

  139. Leinhard, J. H. and Wong, P. T. Y., “The Dominant and Unstable Wavelength and Minimum Heat Flux during Film Boiling on a Horizontal Cylinder,” Journal of Heat Transfer, Vol. 86, pp 220–226, May, 1964.

    Article  Google Scholar 

  140. Dhir, V. K. and Purohit, G. P., “Subcooled Film-boiling Heat Transfer from Sphere,” ASME Paper 77-HT-78, 1977.

    Google Scholar 

  141. Bankoff, S. G. et al, “Destabilization of Film Boiling in Liquid-Liquid Systems,” Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada, August, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Cronenberg, A.W., Benz, R. (1980). Vapor Explosion Phenomena with Respect to Nuclear Reactor Safety Assessment. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9916-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9916-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9918-6

  • Online ISBN: 978-1-4613-9916-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics