Skip to main content

An Extension of Karmarkar’s Algorithm and the Trust Region Method for Quadratic Programming

  • Chapter
Progress in Mathematical Programming

Abstract

An extension of Karmarkar’s algorithm and the trust region method is developed for solving quadratic programming problems. This extension is based on the affine scaling technique, followed by optimization over a trust ellipsoidal region. It creates a sequence of interior feasible points that converge to the optimal feasible solution. The initial computational results reported here suggest the potential usefulness of this algorithm in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. R. Barnes, A variation on Karmarkar’s algorithm for solving linear programming, Math. Programming 36 (1986), 174–182.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. M. Cavalier and A. L. Soyster, Some computation experience and a modification of the Karmarkar algorithm, ISME Working Paper 85–105, Department of Industrial and Management Systems Engineering, Pennsylvania State University (1985).

    Google Scholar 

  3. R. W. Cottle and G. B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra Appl. 1 (1968), 103–125.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, N.J., 1963.

    MATH  Google Scholar 

  5. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968.

    MATH  Google Scholar 

  6. K. R. Frisch, The logarithmic potential method of convex programming, Memorandum, University Institute of Economics, Oslo, Norway (1955).

    Google Scholar 

  7. P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method, Math. Programming 36 (1986), 183–209.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. M. Goldfeld, R. E. Quandt, and H. F. Trotter, Maximization by quadratic hill climbing, Econometrica 34 (1966), 541–551.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. C. Gonzaga, An algorithm for solving linear programming problems in O(n 3 L) operations, Memorandum No. UCB/ERL M87/10, Electronic Research Laboratory, University of California, Berkeley (1987).

    Google Scholar 

  10. S. Kapoor and P. Vaidya, Fast algorithms for convex quadratic programming and multicommodity flows, Proc. 18th Annual ACM Symposium on Theory of Computing (1986), 147–159.

    Google Scholar 

  11. N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), 373–395.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Research Report, Department of Information Sciences, Tokyo Institute of Technology (1987).

    Google Scholar 

  13. K. O. Kortanek and M. Shi, Convergence results and numerical experiments on a linear programming hybrid algorithm, European Journal of Operational Research (to appear).

    Google Scholar 

  14. C. E. Lemke, Bimatrix equilibrium points and mathematical programming, Management Sci. 11 (1965), 681–689.

    Article  MathSciNet  Google Scholar 

  15. N. Megiddo, Pathways to the optimal set in linear programming. In: Progress in Mathematical Programming: Interior-Point and Related Methods. Springer-Verlag, New York (1989).

    Google Scholar 

  16. R. C. Monteiro and I. Adler, An O(n 3 L) interior point algorithm for convex quadratic programming, Manuscript, Department of Industrial Engineering and Operations Research, University of California, Berkeley (1986).

    Google Scholar 

  17. J. Rosen, The gradient projection method for nonlinear programming, I. Linear constraints, J. Soc. Ind. Appl. Math. 12 (1964), 74–92.

    Article  Google Scholar 

  18. D. C. Sorensen, Trust region methods for unconstrained minimization, in Nonlinear Optimization, M.J.D. Powell (ed.), Academic Press, London, 1981.

    Google Scholar 

  19. R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, On a modification of Karmarkar’s linear programming algorithm, Algorithmica 1 (1986), 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Wolfe, The simplex algorithm for quadratic programming, Econometrica 27 (1959), 382–398.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Ye, Interior algorithms for linear, quadratic, and linearly constrained convex programming, Ph.D. Thesis, Department of Engineering-Economic Systems, Stanford University (1987).

    Google Scholar 

  22. Y. Ye and M. Kojima, Recovering optimal dual solutions in Karmarkar’s algorithm for linear programming, Math. Programming 39 (1987), 305–317.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ye, Y. (1989). An Extension of Karmarkar’s Algorithm and the Trust Region Method for Quadratic Programming. In: Megiddo, N. (eds) Progress in Mathematical Programming. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9617-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9617-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9619-2

  • Online ISBN: 978-1-4613-9617-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics