Skip to main content

A Primal-Dual Interior Point Algorithm for Linear Programming

  • Chapter
Progress in Mathematical Programming

Abstract

This chapter presents an algorithm that works simultaneously on primal and dual linear programming problems and generates a sequence of pairs of their interior feasible solutions. Along the sequence generated, the duality gap converges to zero at least linearly with a global convergence ratio (1 — η/n); each iteration reduces the duality gap by at least η/n. Here n denotes the size of the problems and η a positive number depending on initial interior feasible solutions of the problems. The algorithm is based on an application of the classical logarithmic barrier function method to primal and dual linear programs, which has recently been proposed and studied by Megiddo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga, An implementation of Karmarkar’s algorithm for linear programming, Working Paper, Operations Research Center, University of California, Berkeley (May 1986).

    Google Scholar 

  2. K. R. Frish, The logarithmic potential method of convex programming, unpublished manuscript, University Institute of Economics, Oslo, Norway (1955).

    Google Scholar 

  3. D. M. Gay, A variant of Karmarkar’s linear programming algorithm for problems in standard form, Math. Programming 37 (1987), 81–90.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method, Math. Programming 36 (1986), 183–209.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. C. Gonzaga, An algorithm for solving linear programming problems in O(n 3 L) operations, in Progress in Mathematical Programming, N. Megiddo, (ed.), Springer-Verlag, New York, this volume.

    Google Scholar 

  6. H. Imai, Extensions of the multiplicative penalty function method for linear programming, Journal of the Operations Research Society of Japan 30 (1987), 160–180.

    MATH  MathSciNet  Google Scholar 

  7. M. Iri and H. Imai, A multiplicative barrier function method for linear programming, Algorithmica 1 (1986), 455–482.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Karmarkar, A new polynomial-time algorithm for linear programming, Proc. 16th Annual ACM Symposium on Theory of Computing, Washington, D.C. (1984).

    Google Scholar 

  9. N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), 373–395.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Kojima, Determining basic variables of optimal solutions in Karmarkar’s new LP algorithm, Algorithmica 1 (1986), 499–515.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math. Programming (to appear).

    Google Scholar 

  12. M. Kojima and K. Tone, An efficient implementation of Karmarkar’s new LP algorithm, Research Report No. B-180, Department of Information Sciences, Tokyo Institute of Technology, Meguro, Tokyo (April 1986).

    Google Scholar 

  13. O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1970.

    MATH  Google Scholar 

  14. N. Megiddo, Pathways to the optimal set in linear programming, this volume.

    Google Scholar 

  15. N. Megiddo and M. Shub, Boundary behavior of interior point algorithms in linear programming, to appear in Math. Oper. Res. (1988).

    Google Scholar 

  16. J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear programming, Math. Programming 40 (1988), 59–94.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Sonnevend, An ‘analytic center’ for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, Proc. 12th IFIP Conference on System Modeling and Optimization, Budapest (1985), to appear in Lecture Notes in Control and Information Sciences, Springer-Verlag, New York.

    Google Scholar 

  18. K. Tanabe, Complementarity-enforcing centered Newton method for linear programming: Global method, presented at the Symposium, or “New Method for Linear Programming,” Institute of Statistical Mathematics, Tokyo (February 1987).

    Google Scholar 

  19. M. J. Todd and B. P. Burrell, An extension of Karmarkar’s algorithm for linear programming used dual variables, Aigorithmica 1 (1986), 409–424.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. M. Vaidya, An algorithm for linear programming which requires 0(((m + n) × n 2 + (m + n) 1.5 n)L) arithmetic operations, AT&T Bell Laboratories, Murray Hill, N.J. (1987).

    Google Scholar 

  21. H. Yamashita, A polynomially and quadratically convergent method for linear programming, Working Paper, Mathematical Systems Institute, Inc. Tokyo (October 1986).

    Google Scholar 

  22. Y. Ye and M. Kojima, Recovering optimal dual solutions in Karmarkar’s polynomial time algorithm for linear programming, Math. Programming 39 (1987), 305–317.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kojima, M., Mizuno, S., Yoshise, A. (1989). A Primal-Dual Interior Point Algorithm for Linear Programming. In: Megiddo, N. (eds) Progress in Mathematical Programming. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9617-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9617-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9619-2

  • Online ISBN: 978-1-4613-9617-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics