Skip to main content

Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems

  • Conference paper
Recent Advances in Iterative Methods

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 60))

Abstract

The Rational Krylov algorithm for the nonsymmetric matrix pencil eigenvalue problem is described. It is a generalization of the shifted and inverted Lanczos (or Araoldi) algorithm, in which several shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil, gives Ritz approximations to the solution of the original pencil.

Rational Krylov is the natural alternative when factorization of the matrix is not much more expensive than solution, as e. g. when a multigrid algorithm is used to solve systems.

In one variant several iterations with different shifts are started on the same starting vector. Such iterations can be performed in parallel, yielding a p degree Krylov vector in one iteration on p processors. An analogy to a method of experimentally verifying stability of aircraft structures is shown.

The algorithm is demonstrated on two applied test problems.

The work was partly supported by the Swedish National Board for Technical Development, STU grant 91-1210.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMS(MOS):

subject classifications. 65F15

References

  1. W. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

    MathSciNet  MATH  Google Scholar 

  2. F. Chatelin and S. Godet-Thobie. Stability analysis in aeronautical industries, in Proceedings of the 2nd Symposium on High-Performance Computing, Montpellier, France, M. Durand and F. El Dabaghi eds, Elsevier/North-Holland, pp.415–422,1991.

    Google Scholar 

  3. D. L. Boley and G. H. Golub, The nonsymmetric Lanczos algorithm and controllability, Systems Control Lett., 16 (1991), pp. 97–105.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980), pp. 1251–1268.

    MathSciNet  MATH  Google Scholar 

  5. G. Golub, R. Underwood, and J. Wilkinson, The Lanczos algorithm for the symmetric Ax = λBx problem, Tech. Report STAN-CS-72-270, Computer Science, Stanford University, Stanford, CA, 1972.

    Google Scholar 

  6. R. G. Grimes, J. G. Lewis, and H. D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, tech. report, Appl. Math. Stat. RTS div. Boeing Comp. Serv., M/S 7L-21, Seattle WA 98124, USA, 1991.

    Google Scholar 

  7. M. H. Gutknecht, A completed theory for the unsymmetric Lanczos process and related algorithms, part J, SIMAX, 13 (1992), pp. 594–639.

    Google Scholar 

  8. J. Huitfeldt and A. Ruhe, A new algorithm for numerical path following applied to an example from hydro dynamical flow, SISSC, 11 (1990), pp. 1181 – 1192.

    MathSciNet  MATH  Google Scholar 

  9. W. Kahan, B. Parlett, and E. Jiang, Residual bounds on approximate eigen-systems of nonnormal matrices, SINUM, 19 (1982), pp. 470 - 484.

    MathSciNet  MATH  Google Scholar 

  10. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, National Bureau of Standards, Journal of Research, 45 (1950), pp. 255–282.

    Google Scholar 

  11. R. Meyer-Spasche, Some bifurcation diagrams for Taylor vortex flows, Phys. Fluids, 28 (1985), pp. 1248–1252.

    Article  Google Scholar 

  12. R. Meyer-Spasche and H. B. Keller, Computations of the axisymmetric flow between rotating cylinders, Journ. Comp. Physics, 35 (1980), pp. 100 - 109.

    Article  MATH  Google Scholar 

  13. C. Paige, Practical use of the symmetric Lanczos process with reorthogonalization, BIT, 10 (1970), pp. 183–195.

    Google Scholar 

  14. C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices, PhD thesis, London University, London, England, 1971.

    Google Scholar 

  15. B. Parlett, Reduction to tridiagonal form and minimal realizations, SIMAX, 13 (1992), pp. 567–593.

    MathSciNet  MATH  Google Scholar 

  16. B. Parlett and Y. Saad, Complex shift and invert strategies for real matrices, Lin. Alg. Appl., 88 /89 (1987), pp. 575–595.

    Article  MathSciNet  Google Scholar 

  17. B. Parlett and D. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comp., 33 (1979), pp. 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Ruhe, The two-sided Arnoldi algorithm for nonsymmetric eigenvalue problems, in Matrix Pencils, LNM 973, B. Kågström and A. Ruhe, eds., Springer-Verlag, Berlin Heidelberg New York, 1983, pp. 104–120.

    Google Scholar 

  19. A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, LAA, 58 (1984), pp. 391–405.

    MathSciNet  MATH  Google Scholar 

  20. Y. Saad, Variations of Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Lin. Alg. Appl., 34 (1980), pp. 269–295.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Wittmeyer, Parameteridentifikation bei Strukturen mit benachbarten Eigenfrequenzen speziell bei Flugschwingungsversuchen, Z. Flugwissenschaft und Weltraumforschung, 6 (1982), pp. 80–90.

    MATH  Google Scholar 

  22. L. Wittmeyer-Koch, Comparison of the evaluation of a shake test using either the l1-norm or the l2-norm, Tech. Report LiTH-MAT-R-1990-36, Dept of Math. Univ. Linköping, Sweden, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc

About this paper

Cite this paper

Ruhe, A. (1994). Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems. In: Golub, G., Luskin, M., Greenbaum, A. (eds) Recent Advances in Iterative Methods. The IMA Volumes in Mathematics and its Applications, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9353-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9353-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9355-9

  • Online ISBN: 978-1-4613-9353-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics