Skip to main content

Performing Whole-Body Simulations of Gait with 3-D, Dynamic Musculoskeletal Models

  • Chapter
Multiple Muscle Systems

Abstract

As walking is a basic activity, it is not surprising that the literature describing and analyzing human gait is prolific. Articles on walking appear regularly in newspapers, fitness magazines, medical research journals, technical publications, and the like. Most of these focus on the particular aspects of gait most interesting to the reader. Even sub-disciplines with relatively limited appeal have extensive bibliographies!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audu, M.L., and Davy, D.T. (1985) The influence of muscle model complexity in musculoskeletal motion modeling. J. Biomech. Engrg., 107: 147–157.

    Article  CAS  Google Scholar 

  • Bellman, R.E. (1957) Dynamic Programming. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Brand, R.A., Crowninshield, R.D., Wittstock, C.E., Pedersen, D.R., Clark, C.R., and Van Krieken, F.M. (1982) A model of lower extremity muscular anatomy. J. Biomech. Engrg., 104: 304–310.

    Article  CAS  Google Scholar 

  • Chao, E.Y., and An, K.N. (1978) Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Engrg., 100: 159–167.

    Article  Google Scholar 

  • Crowninshield, R.D., Pope, M.H., and Johnson, R.J. (1976) An analytical model of the knee. J. Biomechanics, 9: 397–405.

    Article  CAS  Google Scholar 

  • Crowninshield, R.D. (1978) Use of optimization techniques to predict muscle forces. J. Biomech. Engrg., 100: 88–92.

    Article  Google Scholar 

  • Crowninshield, R.D., and Brand, R.A. (1981) A physiologically based criterion of muscle force prediction in locomotion. J. Biomechanics, 14: 793–801.

    Article  CAS  Google Scholar 

  • Crowninshield, R.D., Johnston, R.C., Andrews, J.G., and Brand, R.A. (1978) A biomechanical investigation of the human hip. J. Biomechanics, 11: 75–85.

    Article  CAS  Google Scholar 

  • Dapena, J. (1981) Simulation of modified human airborne movements. J. Biomechanics, 14: 81–89.

    Article  CAS  Google Scholar 

  • Davy, D.T., and Audu, M.L. (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomechanics, 20: 187–201.

    Article  CAS  Google Scholar 

  • Delp, S.L., Bleck, E.E., Zajac, F.E., and Bollini, G. (1989) Biomechanical analysis of the Chiari pelvic osteotomy: preserving hip abductor strength. Clin. Orthop. Rel. Res. 254: 189–198.

    Google Scholar 

  • Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Engrg., Special Issue: Interaction with and Visualization of Biomedical Data, in press.

    Google Scholar 

  • Elftman, H. (1939) The function of muscles in locomotion. Am. J. Physiol., 125: 357–366.

    Google Scholar 

  • Friederich, J.A., and Brand, R.A. (1990) Muscle fiber architecture in the human lower limb. Technical Note, J. Biomech. 23: 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Gage, J.R., Fabian, D., Hicks, R., and Tashman, S. (1984) Pre- and post-operative gait analysis in patients with spastic diplegia: A preliminary report. J. Pediatric Orthop., 4: 715–725.

    Article  CAS  Google Scholar 

  • Gronley, J.K., and Perry, J. (1984) Gait analysis techniques. J. American Physical Therapy Assn., 63: 1831–1838.

    Google Scholar 

  • Hallen, L.G., and Lindahl, O. (1966) The ‘screw- home’ movement in the knee joint. Acta Orthop. Scand., 37: 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Hardt, D.E. (1978) Determining muscle forces in the leg during normal human walking — An application and evaluation of optimization methods. J. Biomech. Engrg., 100: 72–78.

    Article  Google Scholar 

  • Hardt, D.E., and Mann, R.W. (1980) A five body — three dimensional dynamic analysis of walking. Technical Note, J. Biomechanics, 13: 455–457.

    Article  CAS  Google Scholar 

  • Hatze, H. (1977) A myocybernetic control model of skeletal muscle. Biol. Cybernetics, 25: 103–119.

    Article  CAS  Google Scholar 

  • Hatze, H. (1981) A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J. Biomechanics, 14: 135–142.

    Article  CAS  Google Scholar 

  • Hemami, H., Jaswa, V.C., and McGhee, R.B. (1975) Some alternative formulations of manipulator dynamics for computer simulation studies. Proc. 13thAllerton Corf, on Circuit Theory, University of Illinois, October.

    Google Scholar 

  • Hill, A.V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B. (Lond.), 126: 136–195.

    Article  Google Scholar 

  • Hoy, M.G., Zajac, F.E., and Gordon, M.E. (1990) A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment-angle relationship of mus- culotendon actuators at the hip, knee, and ankle. J. Biomechanics 23: 157–169.

    Article  CAS  Google Scholar 

  • Inman, V.T., Ralston, H.J., and Todd, F. (1981) Human Walking. J. C. Lieberman (ed.), Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Isman, R.E. and Inman, V.T. (1969) Anthropometric studies of the human foot and ankle. Bull, of Prosthetics Research, Spring.

    Google Scholar 

  • Ju, M.-S. and Mansour, J.M. (1988) Simulation of the double limb support phase of human gait. J. Biomech. Engrg., 110: 223–229.

    Article  CAS  Google Scholar 

  • Kane, T. R. and Levinson, D.A. (1985) Dynamics: Theory and Applications. A. Murphy and M. Eichberg (eds.), McGraw-Hill, New York.

    Google Scholar 

  • Kirk, D.E. (1970) Optimal Control Theory. An Introduction. R. W. Newcomb (ed.), Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Lafortune, M.A. (1984) The use of intra-cortical pins to measure the motion of the knee joint during walking. PhD. Dissertation, College of Health, Physical Education and Recreation, The Pennsylvania State University, State College.

    Google Scholar 

  • Larson, R.E., and Casti, J.L. (1978) Principles of Dynamic Programming. Part I. Basic Analytic and Computational Methods. J.M. Mendel (ed.), Marcel Dekker, New York.

    Google Scholar 

  • Mayne, D.Q., and Polak, E. (1975) First-order strong variation algorithms for optimal control. J. Optimization Theory and Applications, 16: 277–301.

    Article  Google Scholar 

  • Mena, D., Mansour, J.M., and Simon, S.R. (1981) Analysis and synthesis of human swing leg motion during gait and its clinical applications. J. Biomechanics, 14: 823–832.

    Article  CAS  Google Scholar 

  • Mochon, S., and McMahon, T.A. (1980) Ballistic walking. J. Biomechanics, 13: 49–57.

    Article  CAS  Google Scholar 

  • Morecki, A. (1980) Identification, modeling and rehabilitation problems in modern biomechanics In Biomechanics of Motion, A. Morecki (ed.) Springer- Verlag, New York, pp. 1 - 40.

    Google Scholar 

  • Murphy, M.C., Zarins, B., Jasty, M., and Mann, R.W. (1985) In vivo measurement of the three- dimensional skeletal motion at the normal knee. Proc. of the 31st Annual ORS, Las Vegas, NV, Jan. 21–24, p. 142.

    Google Scholar 

  • Naumann, S., Caims, B., Mazliah, J., Silver, R., White, C., Rang, M., and Milner, M. (1984) Preoperative and postoperative gait assessments as a guide in planning tendon transfers about the ankle joint in children with cerebral palsy. Proc. 2nd Internl. Corf, on Rehab. Engrg., Ottawa, Canada, pp. 629–630.

    Google Scholar 

  • Nazarczuk, K. (1970) The theory of artificial muscle actuators and its application for synthesis and control of biomanipulators. PhD. Dissertation, Warsaw, Poland.

    Google Scholar 

  • Nielan, P.E. (1986) Efficient computer simulation of motions of multibody systems. PhD. Dissertation, Department of Mechanical Engineering, Stanford University, Stanford, CA.

    Google Scholar 

  • Onyshko, S., and Winter, D.A. (1980) A mathematical model for the dynamics of human locomotion. J. Biomechanics, 13: 361–368.

    Article  CAS  Google Scholar 

  • Pandy, M.G., and Berme, N., (1987) Synthesis of human walking: A three-dimensional model for single support Part 2: Pathological gait. ASME Winter Annual Meeting, Boston, December 13–18, pp. 9–15.

    Google Scholar 

  • Pandy, M.G., and Berme, N., (1988) Synthesis of human walking: A planar model for single support. J. Biomechanics, 21: 1053–1060.

    Article  CAS  Google Scholar 

  • Pandy, M.G., and Berme, N., (1988) A numerical method for simulating the dynamics of human walking. J. Biomechanics, 21: 1043–1051.

    Article  CAS  Google Scholar 

  • Patriarco, A.G., Mann, R.W., Simon, S.R., and Mansour, J.M. (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. J. Biomechanics, 14: 513–525.

    Article  CAS  Google Scholar 

  • Pedotti, A., Krishnan, V.V., and Stark, L. (1978) Optimization of muscle-force sequencing in human locomotion. Math. Biosci., 38: 57–76.

    Article  Google Scholar 

  • Ramey, M.R., and Yang, A.T. (1981) A simulation procedure for human motion studies. J. Biomechanics, 14: 203–213.

    Article  CAS  Google Scholar 

  • Saunders, J.B., deC. M., Inman, V.T., and Ebeihart, H.D. (1953) The major determinants in normal and pathological gait. J. Bone Jt. Surg., 35-A: 543–559.

    Google Scholar 

  • Schaecter, D.B., and Levinson, D.A. (1987) AUTOLEV User’s Manual. Available from: OnLine Dynamics, Inc., 1605 Honfleur Dr., Sunnyvale, CA 94087.

    Google Scholar 

  • Seireg, A., and Arvikar, R.J. (1973) A mathematical model for evaluation of forces in lower extremities of the musculo-skeletal system. J. Biomechanics, 6: 313–326.

    Article  CAS  Google Scholar 

  • Seireg, A., and Arvikar, R.J. (1975) The prediction of muscular load sharing and joint forces in the lower extremities during walking. J. Biomechanics, 8: 89–102.

    Article  CAS  Google Scholar 

  • Shiavi, R. (1985) Electromyographic patterns in adult locomotion: A comprehensive review. J. Rehab. R&D, 22: 85–98.

    Article  CAS  Google Scholar 

  • Simon, S.R., Weintraub, M., Bylander, T., Hirsch, D., and Szolovits, P. (1989) Dr. Gait: An expert system for gait analysis. RESNA 12th Annual Conf. New Orleans, pp. 93–94.

    Google Scholar 

  • Sutherland, D.H. (1984) Gait Disorders in Childhood and Adolescence. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Van Eijden, T.M.G.J., Kouwenhoven, E., Verburg, J., and Weijs, W.A. (1986) A mathematical model of the patellofemoral joint. J. Biomechanics, 19: 219–229.

    Article  Google Scholar 

  • Wickiewicz, T.L., Roy, R.R., Powell, P.L., and Edgerton, V.R. (1983) Muscle architecture of the human lower limb. Clin. Orthop. Rel. Res., 179: 275–283.

    Google Scholar 

  • Winter, D.A. (1987) The Biomechanics and Motor Control of Human Gait University of Waterloo Press, Waterloo, Ontario, Canada.

    Google Scholar 

  • Wismans, J., Veldpaus, F., Janssen, J., Huson, A., and Struben, P. (1980) A three-dimensional mathematical model of the knee joint. J. Biomechanics, 13: 677–685.

    Article  CAS  Google Scholar 

  • Yamaguchi, G.T. (1989) Feasibility and conceptual design of functional neuromuscular stimulation systems for the restoration of natural gait to paraplegics based on dynamic musculoskeletal models. PhD. Thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA Aug. 1989.

    Google Scholar 

  • Yamaguchi, G.T., and Zajac, F.E. (1989) A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomechanics, 22: 1–10.

    Article  CAS  Google Scholar 

  • Yamaguchi, G.T., and Zajac, F.E. (1989) Sensitivity of simulated human gait to neuromuscular control patterns. XII International Congress of Biomechanics, Los Angeles, June 26–30, paper #166.

    Google Scholar 

  • Yamaguchi, G.T., and Zajac, F.E. (1990) Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: A computer simulation study. IEEE Trans. Biomed. Engrg., in press.

    Google Scholar 

  • Yen, V., and Nagurka, M.L. (1987) Biomechanics of normal and prosthetic gait. ASME Winter Annual Meeting, Boston, December 13–18, pp. 17–22.

    Google Scholar 

  • Zajac, F.E. (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control In CRC Critical Reviews in Biomedical Engineering. J.R. Bourne (ed.), CRC Press, Inc., Boca Raton, FL (in press).

    Google Scholar 

  • Zajac, F.E. and Gordon, M.E. (1989) Determining muscle’s force and action in multi-articular movement In Exercise and Sport Science Reviews. K. Pandolf (ed.), Williams & Wilkins, Baltimore, V. 17, pp. 187–230.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Yamaguchi, G.T. (1990). Performing Whole-Body Simulations of Gait with 3-D, Dynamic Musculoskeletal Models. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_43

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics