Skip to main content

Modeling of Muscle Action and Stability of the Human Spine

  • Chapter
Multiple Muscle Systems

Abstract

Biomechanical investigations of the human spine are nowadays rarely taken up for purely cognitive reasons. Usually they are stimulated by needs of various areas of contemporary civilization and directed toward applying their results in medicine (etiology of diseases and defects of the spine, rehabilitation, occupational medicine), technology (e.g. influence of a vehicle upon the spine of its human operator in normal or emergency conditions), and sports (influence of overloads due to sport training upon the spine).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aruin A., Zatsiorsky V., Prilutsky B. (1989). Decision of distributional problem using “logical” and “illogical” optimization criteria. In: Gregor R.J., Zemicke R.F., Whiting W.C. (eds), Proceedings of the XII Int. Congr. of Biomech Univ. of California, Los Angeles, 431.

    Google Scholar 

  • Andriacchi T., Schultz A.B., Belytschko T., Galante J. (1974). A model for studies of mechanical interactions between the human spine and rib cage. J. Biomech 7: 497–507.

    Article  PubMed  CAS  Google Scholar 

  • Arvikar R.J., Seireg A. (1978). Distribution of spinal disc pressure in the seated posture subjected to impact. Aviation, Space and Environmental Medicine 49 (1): 166–169.

    CAS  Google Scholar 

  • Belytschko T.B., Andriacchi T.P., Schultz A.B., Galante J.D. (1973). Analog studies of forces in the human spine. J. Biomech 6: 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Bergmark A. (1987). Mechanical stability of the human lumbar spine. Ph.D.Thesis, Lund Institute of Technology, Sweden. Biezanowska E. (1984). modeling of muscle coaction under dynamic conditions. Biology of Sport 1: No.3/4, PWN, Warsaw, 199–208.

    Google Scholar 

  • Biezanowska E. (1984). modeling of muscle coaction under dynamic conditions. Biology od Sport 1: No.3/4, PWN, Warsaw, 199–208.

    Google Scholar 

  • Biezanowska E., Kedzior K. (1981). Simulation approach to modeling and investigation of static and dynamic properties of skeletal muscles. In: Morecki A. et al. (eds), Biomechanics VIIA, University Park Press-Baltimore, PWN, Warsaw, 208–214.

    Google Scholar 

  • Chaffin D.B., Andersson G.B. (1984). Occupational Biomechanics. John Willey and Sons, New York.

    Google Scholar 

  • Crowninshield R.D., Johston R.C. Andrews J.G., Brand R.A. (1978). A biomechanical investigation of the human hip. J Biomech 11: 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Dabrowska A., Kedzior K. (1981). Cooperation of muscles under dynamic conditions. In: Morecki A. et al (eds), Biomechanics VIIA, University Park Press, Baltimore; PWN, Warsaw, 215–222.

    Google Scholar 

  • Dabrowska A., Kedzior K. (1985). Investigation and modeling of relationship between integrated surface EMG and muscle tension. In: Winter D.A. et al. (eds), Biomechanics IXA, Human Kinetics Pub., Champaign, Illinois, 308–312.

    Google Scholar 

  • Deng Y.C., Goldsmith W. (1987). Response of a human head/neck/upper-torso replica to dynamic loading-II. Analytical/numerical model. J. Biomech 20: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich M., Kedzior K., Zagrajek T. (1988). Finite element method analysis of human spine segment. In: de Groot et al. (eds), Biomechanics XIA, Free University Press, Amsterdam, 333–337.

    Google Scholar 

  • Dietrich M, Kedzior K., Zagrajek T. (1989). Model of human spine system. In: GregorR.J., Zernicke R.F., Whiting W.C. (eds), Proceedings of the XII Int. Congr. of Biomech., Univ. of California, Los Angeles, 381.

    Google Scholar 

  • Dietrich M., Kurowski P. (1983). Model of the human lumbar spine. Proc. of Sixth IFToMM Congress on Theory of Machines and Mechanisms, Indian Institute of Technology, Delhi, vol. 2, 1386–1389.

    Google Scholar 

  • Dietrich M., Kurowski P. (1985). The importance of mechanical factors in the etiology of spondylolysis. A model analysis of loads and stresses in human lumbar spine. Spine 10 (6): 532–542.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich M., Zagrajek T. (1989). Simulation of human spine system. Second Int. Symp. on Computer Simulation in Biomechanics, Univ. of California, Davis, 32–33.

    Google Scholar 

  • Gracovetsky S., Farfan H.F., Lamy C. (1977). A mathematical model of the lumbar spine using an optimized system to control muscles and ligaments. Orthop. Clin. N.A 8 (1): 135–153.

    CAS  Google Scholar 

  • Hatze H. (1975). A control model of skeletal muscle and its application to a time optimal biomotion. Ph.D. thesis, Univ. of South Africa, Pretoria.

    Google Scholar 

  • Hatze H. (1980). Neuromusculoskeletal control systems modeling-a critical survey of recent developments. IEEE Transactions on Automatic Control, AC-25(3): 375–385.

    Google Scholar 

  • Kedzior K. (1973). Investigation of dynamic properties of isolated skeletal muscles. Archive of Mechanical Engineering XX(2), Polish Scientific Pub., Warsaw, 219–238.

    Google Scholar 

  • Laananen D.H. (1987). Passenger response in transport aircraft accidents-a simulation. Soma-Engineering for the Human Body, 2 (1): 18–25.

    Google Scholar 

  • Laananen D.H., Bolukbasi A.D., Coltman J. (1982). Computer simulation of an aircraft seat and occupant in a crash environment (final report), Simula Inc., Tempe, Arizona.

    Google Scholar 

  • Nachemson A.L. (1981). Disc pressure measurements. Spine 6: 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Obrastsov I.F. (ed) (1988). Strength problems in biomechanics. Wysschaya Schola, Moscow (in Russian).

    Google Scholar 

  • Orne D., King Liu Y. (1971). A mathematical model of spinal response to impact. J. Biomech 4: 49–71.

    Article  PubMed  CAS  Google Scholar 

  • Schultz A.B., Belytschko T.B., Andriacchi T.P. (1973). Analog studies of forces in the human spine: mechanical properties and motion segment behaviour. J. Biomech 6: 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Schultz A.B., Galante J. (1970). A mathematical model for the mechanics of the human vertebral column. J. Biomech 3: 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Seireg A., Arvikar R.J. (1976). A mathematical model for evaluation of forces in the lower extremities of the musculoskeletal system. J. Biomech 6: 313–326.

    Article  Google Scholar 

  • Skalak R., Shu Chien (eds), (1987). Handbook of Bioengineering. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Soechting J.F., Roberts W.J. (1975). Transfer characteristics between EMG activity and muscle tension under isometric conditions in man. J. Physiology Pans 70: 779–793.

    Google Scholar 

  • Stokes I.A.F., Bigalow L.C., Moreland M.S. (1981). Three dimensional spinal curvature in idiopathic scoliosis. J. Orthop. Research 5: 102–113.

    Article  Google Scholar 

  • Tesh K.M., Dunn S.J., Evans J.H. (1987). The abdominal muscles and vertebral stability. Spine 12 (5): 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Williams J.L., Belytschko T.B. (1983). A three-dimensional model of the human cervical spine for impact simulation. J. Biomechanical Engineering 105: 321–330.

    Article  CAS  Google Scholar 

  • Winter D.A. (1979). Biomechanics of Human Movement. John Wiley and Sons, New York.

    Google Scholar 

  • Yang K.H., King A.I. (1984). Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9 (6): 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Yettram A.L., Jackman M.J. (1980). Equilibrium analysis for the forces in the human spinal column and its musculature. Spine 5 (5): 402–411.

    Article  PubMed  CAS  Google Scholar 

  • Zienkiewicz D.C. (1977). The Finite Element Method in Engineering Science. 3rd edition, McGraw-Hill, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Dietrich, M., Kedzior, K., Zagrajek, T. (1990). Modeling of Muscle Action and Stability of the Human Spine. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics