Skip to main content

The Origin of Electromyograms — Explanations Based on the Equilibrium Point Hypothesis

  • Chapter
Multiple Muscle Systems

Abstract

In the present chapter, we review and further develop the equilibrium-point (EP) hypothesis or λ model for single and multi-joint movements (Feldman 1974, 1986; cf. Chapters 11, 13–22). A departure point is the notion of the measure of the central control signals underlying movement production. According to the EP hypothesis, central commands parameterize the threshold of motorneuron (MN) recruitment. The usual assumption that central signals are directly associated with muscle activation, i.e. recruitment of MNs and their firing frequencies, is rejected (see also Bernstein, 1967). This assumption ignores the role of muscle afferents in motor control as well as the non-linear threshold properties of MNs. In this chapter, we discuss electromyographic (EMG) patterns of single- and multi-joint movements in terms of the EP hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdusamatov R.M., Adamovich S.V., Beikinblit M.B., Chernavsky A.V. and Feldman A.G. (1988) Rapid one-joint movements: a qualitative model and its experimental verification. In Stance and Motion: Facts and Concepts (Eds. Gurfinkel V.S., Ioffe M.E., Massion J. and Roll J.P. ), Plenum Press, New York, pp. 261–270.

    Google Scholar 

  • Abdusamatov R.M., Adamovich S.V. and Feldman A.G. (1987) A model for one-joint motor control in man. In Motor Control. (Eds. Gantchev, G., Dimitrov, B. and Gatev, P. ), Plenum Press, New York, pp. 183–188.

    Google Scholar 

  • Abdusamatov R.M. and Feldman A.G. (1986) Description of electromyograms by a mathematical model of single joint movements. Biofizika 31: 503–505.

    PubMed  CAS  Google Scholar 

  • Adamovich S.V., Burlachkova N.I. and Feldman A.G. (1984) Wave nature of the central process of formation of the trajectories of change in joint angle in man. Biophysics 29: 130–134.

    Google Scholar 

  • Abend W., Bizzi E. and Morasso P. (1982) Human arm trajectory formation. Brain 105: 331–348.

    Article  PubMed  CAS  Google Scholar 

  • Adamovich S.V. and Feldman A.G. (1984) Model of central regulation of the parameters of motor trajectories. Biophysics 29: 338–342.

    Google Scholar 

  • Baldissera F., Hultbom H. and Illert M. (1981) Integration in spinal neuronal systems. In Handbook of Physiology, Sec. 1, Vol. II, The Nervous System: Motor Control, Part 1, (Ed. Brooks, V.B. ), Williams and Wilkins, Baltimore, pp. 509–595.

    Google Scholar 

  • Bernstein N.A. (1967) The Coordination and Regulation of Movements. Pergamon Press, London.

    Google Scholar 

  • Beikinblit M.B., Gelfand I.M. and Feldman A.G. (1986) A model for the control of multi-joint movements. Bioflzika 31: 483–488.

    Google Scholar 

  • Bizzi E. (1980) Central and peripheral mechanisms in motor control. In Tutorial in Motor Behavior (Eds. Stelmach G.E and Requin J. ), North-Holland, Amsterdam, pp. 131–144

    Chapter  Google Scholar 

  • Brown S.H. and Cooke J.D. (1981) Amplitude- and instruction-dependent modulation of movement-related electromyogram activity in humans. J. Physiol 316: 97–107.

    PubMed  CAS  Google Scholar 

  • Burke R.E., Rymer W.Z. and Walsh J.V. (1976) Relative strength of synaptic input from short- latency pathways to motor units of defined type in cat medial gastrocnemius. J. Neurophysiol. 39: 447–458.

    PubMed  CAS  Google Scholar 

  • Cooke J.D. & Brown S.H. (1990) Movement related phasic muscle activation. II: Generation and functional role of the tri-phasic pattern. J. Neurophysiol. 63: 465–472.

    PubMed  CAS  Google Scholar 

  • Descherevsky V.I. (1977) Mathematical Models of Muscle Contraction. Nauka, Moscow, pp. 1–160.

    Google Scholar 

  • Feldman A.G. (1974) Control of the length of a muscle. Biophysics 19: 776–771.

    Google Scholar 

  • Feldman A.G. (1979) Central and Reflex Mechanisms in Motor Control. Nauka, Moscow, pp. 1–184.

    Google Scholar 

  • Feldman A.G. (1980) Superposition of motor programs. II. Rapid forearm flexion in man. Neurosci. 5: 91–95.

    Article  CAS  Google Scholar 

  • Feldman A.G. (1986) Once more on the equilibrium- point hypothesis (> model) for motor control. J. Mot. Behavior 18: 17–54.

    CAS  Google Scholar 

  • Feldman A.G. and Orlovsky G.N. (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp. Neurol. 37: 481–494.

    Article  PubMed  CAS  Google Scholar 

  • Feldman A.G. and Orlovsky G.N. (1975) Activity of interneurones mediating reciprocal la inhibition during locomotion in cats. Brain Res. 84: 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Flash T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57: 257–274

    Article  PubMed  CAS  Google Scholar 

  • Gantmaher F.R. (1966) The Theory of Matrices. Nauka, Moscow, pp. 1–576.

    Google Scholar 

  • Georgopoulos A.P., Kettner R.E. and Schwartz, A.B. (19XX) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci. 8: 2928–2937

    Google Scholar 

  • Gordon, J. and Ghez, C. (1984) EMG patterns in anatagonist muscles during isometric contraction in man: Relations to response dynamics. Exp. Brain Res. 55: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S. (1975) Locomotion in vertebrates: central mechanisms and reflex interactions. Physiol. Rev. 55: 247–304.

    PubMed  CAS  Google Scholar 

  • Hasan Z. and Karst G.M. (1989) Muscle activity for initiation of planar, two-joint arm movements in different directions, Exp. Brain Res. 16: 651–655.

    Article  Google Scholar 

  • Hogan N. (1984) An organizing principle for a class of voluntary movements. J. Neurosci. 4: 2745–2754.

    PubMed  CAS  Google Scholar 

  • Hollerback, J.M. (1985) Computers, brains and the control of movements. Trends in Neurosci. 5: 189–192.

    Article  Google Scholar 

  • Houk J.C. and Rymer Z.W. (1981) Neural control of muscle length and tension. In Handbook of Physiology, Sec. 1, Vol. II, The Nervous System: Motor Control, Part I (Ed. Brooks, V.B. ), Williams and Wilkins, Baltimore, pp. 257–323.

    Google Scholar 

  • Hollerbach, J.M. and Flash, T. (1982) Dynamic interaction between limb segments during planr arm movement. Biol. Cybern. 44: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Hultbom H. (1972) Convergence of interneurons in the reciprocal la inhibitory pathway to motoneurones. Acta Physiol. Scand., Suppl. 375: 1–42.

    Article  Google Scholar 

  • Lundberg A. (1975) Control of spinal mechanisms from the brain. In The Nervous System, Vol. 2, (Ed. Tower, D.B. ), Raven Press, New York, pp. 253–265.

    Google Scholar 

  • Mussa-Ivaldi F.A., Morasso P. and Zaccaria, R. (1988) Kinematic networks. A distributed model for representing and regulation of motor redundancy. Biol. Cybern. 60: 1–16.

    PubMed  CAS  Google Scholar 

  • Nichols T.R. (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. J. Physiol. 410: 463–477.

    PubMed  CAS  Google Scholar 

  • Pellison D., Prablanc C., Goodale M.A. and Jeannerod M. (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp. Brain Res. 62: 303–311.

    Google Scholar 

  • Schmidt R.A. (1982) Motor Control and Learning: A Behavioral Emphasis. Human Kinetic Publishers. Champaign, IL, pp. 303–326.

    Google Scholar 

  • Soechting J.F. and Lacquaniti F. (1981) Invariant characteristics of a pointing movement in man. J. Neurosci. 1: 710–720.

    PubMed  CAS  Google Scholar 

  • Viviani P. and Terzuolo C.A. (1982) Trajectory determines movement dynamics. Neurosci. 7: 431–437.

    Article  CAS  Google Scholar 

  • Wadman W.J., Danier van der Gon J.J., Geuze R.H. and Mol C.R. (1979) Control of fast goal-directed arm movements. J. Hum. Mov. Studies 5: 3–17.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Feldman, A.G., Adamovich, S.V., Ostry, D.J., Flanagan, J.R. (1990). The Origin of Electromyograms — Explanations Based on the Equilibrium Point Hypothesis. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics