Skip to main content

Cobalt in the Environment and Its Toxicological Implications

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 108))

Abstract

Cobalt, atomic number 27, takes its name either from the German Kobold, meaning hobglobin, house spirit, or gnome or from the Greek cobalos, meaning mine (Schroeder 1967). It is widely distributed naturally in rocks, soils, water, and vegetation (Nilsson et al. 1985), and always occurs in nature in association with nickel and usually with arsenic. The most important cobalt minerals are smaltite (CoAs2) and cobaltite (CoAsS); however, the chief technical sources of cobalt are residues called “speisses,” which are obtained in the smelting of arsenical ores of nickel, copper, and lead (Cotton and Wilkinson 1968).

This work was carried out at the Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD, U.S.A., supported by a fellowship from the Scientific Committee of NATO. in the smelting of arsenical ores of nickel, copper, and lead (Cotton and Wilkinson 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikari S (1967) Effects of cobalt chloride on chick embryos. Anat Anz Bd 120(S):75–83.

    CAS  Google Scholar 

  • Ainsworth MA, Tompsett CP, Dean ACR (1980) Cobalt and nickel sensitivity and tolerance in Klebsiella pneumoniae. Microbios 27:175–184.

    PubMed  CAS  Google Scholar 

  • Alexander CS (1969) Cobalt and the heart. Ann Int Med 70:411–413.

    PubMed  CAS  Google Scholar 

  • Alexander CS (1972) Cobalt-beer cardiomyopathy. Am J Med 53:395–417.

    PubMed  CAS  Google Scholar 

  • Al-Tawil NG, Marcusson JA, Möller E (1984) In vitro testing for cobalt sensitivity: An aid to diagnosis. Acta Derm Venereol (Stockh) 64:203–208.

    CAS  Google Scholar 

  • Andersen O (1983) Effects of coal combustion products and metal compounds on sister chromatid exchange (SCE) in a macrophagelike cell line. Environ Hlth Perspect 47:239–253.

    CAS  Google Scholar 

  • Andrews ED (1965) Cobalt poisoning in sheep. N Z Vet J 13:101–103.

    PubMed  CAS  Google Scholar 

  • Barborik M, Dusek J (1972) Cardiomyopathy accompanying industrial cobalt exposure. Br Heart J 34:113–116.

    PubMed  CAS  Google Scholar 

  • Bencko V, Wagner V, Wagnerová M, Zavázal V (1986) Human exposure to nickel and cobalt: Biological monitoring and immunobiochemical response. Environ Res 40:399–410.

    PubMed  CAS  Google Scholar 

  • Berk L, Burchenal JH, Castle WB (1949) Erythropoietic effect of cobalt in patients with or without anemia. N Engl J Med 240:754–761.

    PubMed  CAS  Google Scholar 

  • Brown DR, Southern LL (1985) Effect of “Eimeria Acervulina” infection in chicks fed excess dietary cobalt and/or manganese. J Nutr 115:347–351.

    PubMed  CAS  Google Scholar 

  • Brown TE, Meineke HA (1958) Presence of an active erythropoietic factor (erytrhopoietin) in plasma of rats after prolonged cobalt therapy. Proc Soc Exp Biol Med 99:435–437.

    PubMed  CAS  Google Scholar 

  • Bryan SE, Bright JE (1973) Serum protein responses elicited by iron, cobalt and mercury. Toxicol Appl Pharmacol 26:109–117.

    PubMed  CAS  Google Scholar 

  • Burch RE, Williams RV, Sullivan JF (1973) Effect of cobalt, beer, and thiamin-deficient diets in pigs. Am J Clin Nutr 26:403–408.

    PubMed  CAS  Google Scholar 

  • Calabrese EJ, Canada AT, Sacco C (1985) Trace elements and public health. Ann Rev Pub Hlth 6:131–146.

    CAS  Google Scholar 

  • Caplan RM, Block WD (1963) Experimental production of hyperlipemia in rabbits by cobaltous chloride. J Invest Dermatol 40:199–203.

    PubMed  CAS  Google Scholar 

  • Carson BL, Smith IC (1979) Cobalt: An appraisal of environmental exposure. NIESH, Research Triangle Park, NC.

    Google Scholar 

  • Cartwright GE (1947) Dietary factors concerned in erythropoiesis. Blood 2:111–153.

    PubMed  CAS  Google Scholar 

  • Catsch A, Harmuth-Hoene AE, Mellor DP (1979) The Chelation of Heavy Metals, 1st Ed. Pergamon Press, New York, pp 139–155.

    Google Scholar 

  • Coates EO, Watson JHL (1971) Diffuse interstitial lung disease in tungsten carbide workers. Ann Int Med 75:709–716.

    PubMed  Google Scholar 

  • Coates EO, Sawjer HJ, Rebuck JN, Kvale PA, Sweret LW (1973) Hypersensitivity bronchitis in tungsten carbide workers. Chest 64:390.

    Google Scholar 

  • Correia MA, Schmid R (1975) Effect of cobalt on microsomal cytochrome P-450: Differences between liver and interstitial mucosa. Biochem Biophys Res Commun 65:1378–1387.

    PubMed  CAS  Google Scholar 

  • Corrier DE, Mollenhauer HH, Clark DE, Hare MF, Elissalde MH (1985) Testicular degeneration and necrosis induced by dietary cobalt. Vet Pathol 22:610–616.

    PubMed  CAS  Google Scholar 

  • Corrier DE, Rowe LD, Clark DE, Hare MF (1986) Tolerance and effect of chronic dietary cobalt on sheep. Vet Hum Toxicol 28:216–219.

    PubMed  CAS  Google Scholar 

  • Cotton FA, Wilkinson G (1968) Advanced Inorganic Chemistry, 2nd Ed. John Wiley & Sons, New York, pp 863–878.

    Google Scholar 

  • Crosby WH (1955) The use of cobalt and cobalt-iron preparations in the therapy of anemia. Blood 10:852–861.

    Google Scholar 

  • Curtis JR, Goode GC, Herrington J, Urdaneta LE (1976) Possible cobalt toxicity in mainteneance hemodyalisis patients after treatment with cobaltous chloride: A study of blood and tissue cobalt concentrations in normal subjects and patients with terminal renal failure. Clin Nephrol 5:61–65.

    PubMed  CAS  Google Scholar 

  • Davis JE (1940) The effect of ascorbic acid administration upon experimental polycythemias: The mechanism of cobalt polycythemia. Am J Physiol 129: 140–145.

    CAS  Google Scholar 

  • De Matteis F, Gibbs AH (1976) The effect of cobaltous chloride on liver haem metabolism in the rat. Evidence for inhibition of haem synthesis and for increased haem degradation. Ann Clin Res 8 (Suppl 17): 193–197.

    PubMed  Google Scholar 

  • De Matteis F, Gibbs AH (1977) Inhibition of haem synthesis caused by cobalt in rat liver. Biochem J 162:213–216.

    PubMed  Google Scholar 

  • Demedts M, Gheysens B, Nagels J, Verbeken E, Lauweryns J, Van den Eeckhout D, Lahager D, Gyelsen A (1984) Cobalt lung in diamond polishers. Am Rev Respir Dis 130:130–135.

    PubMed  CAS  Google Scholar 

  • Dickson J, Bond MP (1974) Cobalt toxicity in cattle. Aust Vet J 50:236.

    PubMed  CAS  Google Scholar 

  • Dingle JT, Heath JC, Webb M, Daniel M (1962) The biological action of cobalt and other metals. II. The mechanism of the respiratory inhibition produced by cobalt in mammalian tissues. Biochim Biophys Acta 65:34–46.

    PubMed  CAS  Google Scholar 

  • Dixon JR, Lowe DB, Richards DE, Cralley LJ, Stokinger HE (1970) The role of trace metals in chemical carcinogenesis: Asbestos cancers. Cancer Res 30:1068–1074.

    PubMed  CAS  Google Scholar 

  • Dooms-Goossens A, Ceuterick A, Vanmaele N, Degreef H (1980) Follow-up study of patients with contact dermatitis caused by chromates, nickel, and cobalt. Dermatologica 166:249–260.

    Google Scholar 

  • Domingo JL, Llobet JM, Corbella J (1983) The effects of EDTA in acute cobalt intoxication in rats. Toxicol Eur Res 6:251–255.

    Google Scholar 

  • Domingo JL, Llobet JM, Bernat R (1984a) Nutritional and toxicological study of cobalt administered to rats in their drinking water. Rev Toxicol 1:43–54.

    Google Scholar 

  • Domingo JL, Llobet JM, Bernat R (1984b) A study of the effects of cobalt administered orally to rats. Arch Farmacol Toxicol 10:13–20.

    PubMed  CAS  Google Scholar 

  • Domingo JL, Llobet JM (1984c) Effectiveness of some chelating agents as antidotes for acute cobalt(II) intoxication. Rev Toxicol 1:147–155.

    Google Scholar 

  • Domingo JL, Llobet JM (1984d) Treatment of acute cobalt intoxication in rats with l-methionine. Rev Esp Fisiol 40:443–448.

    PubMed  CAS  Google Scholar 

  • Domingo JL, Llobet JM (1984e) The action of l-cysteine in acute cobalt chloride intoxication. Rev Esp Fisiol 40:231–236.

    PubMed  CAS  Google Scholar 

  • Domingo JL, Paternain JL, Llobet JM, Corbella J (1985a) Effects of cobalt on postnatal development and late gestation in rats upon oral administration. Rev Esp Fisiol 41:293–298.

    PubMed  CAS  Google Scholar 

  • Domingo JL, Llobet JM, Tomás JM (1985b) N-Acetyl-l-cysteine in acute cobalt poisoning. Arch Farmacol Toxicol 11:55–62.

    PubMed  CAS  Google Scholar 

  • Domingo JL, Llobet JM, Corbella J (1985c) The effect of l-histidine on acute cobalt intoxication in rats. Food Chem Toxicol 23:130–131.

    PubMed  CAS  Google Scholar 

  • Drummond GS, Kappas A (1980) Metal ion interactions in the control of haem oxygenase induction in liver and kidney. Biochem J 192:637–648.

    PubMed  CAS  Google Scholar 

  • Duckham JM, Lee HA (1976) The treatment of refractory anemia of chronic renal failure with cobalt chloride. Q J Med 178:277–294.

    Google Scholar 

  • Eaton DL, Stacey NH, Wong KL, Klaassen CD (1980) Dose-response effects of various metal ions on rat liver metallothionein, glutathione, heme oxygenase, and cytochrome P-450. Toxicol Appl Pharmacol 53:393–402.

    Google Scholar 

  • Elinder CG, Friberg L (1979) Cobalt. In: Friberg L, Nordberg F, Vouk VB (eds) Handbook on the Toxicology of Metals. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 399–407.

    Google Scholar 

  • Elinder CG (1984) Health hazards from exposure to cobalt with special reference to carcinogenic, mutagenic and teratogenic effects. Toxicol Environ Chem 7: 251–256.

    CAS  Google Scholar 

  • Ellis NJ, Shallow M, Judson GJ (1987) Weight gain of lambs treated with a soluble glass bullet containing cobalt, selenium and copper. Aust Vet J 64:93–94.

    PubMed  CAS  Google Scholar 

  • Factor SM, Sonnenblick EH (1985) The pathogenesis of clinical and experimental congestive cardiomyopathies: Recent concepts. Prog Cardiovasc Dis 27:395–420.

    PubMed  CAS  Google Scholar 

  • Ferm HV (1972) The teratogenic effects of metals on mammalian embryos. Adv Teratol 6:51–75.

    Google Scholar 

  • Fischer J, Holubar J, Malik V (1967) A new method of producing chronic epileptogenic cortical foci in rats. Physiol Bohemoslov 16:272–277.

    PubMed  CAS  Google Scholar 

  • Fodden JH (1953) Experiments with chemicals noxious to the pancreatic α-cells. Am J Clin Path 23:1002–1011.

    PubMed  CAS  Google Scholar 

  • Frost DV, Elvehjem CA, Hart EB (1941) A study of the need for cobalt in dogs on milk diets. J Nutr 21:93–100.

    CAS  Google Scholar 

  • Gainer JH (1972) Increased mortality in encephalomyocarditis virus infected mice consuming cobalt sulfate: Tissue concentrations of cobalt. Am J Vet Res 33: 2067–2073.

    PubMed  CAS  Google Scholar 

  • Gainer JH (1973) Activation of the Rauscher leukemia virus by metals. J Natl Cancer Inst 51:609–613.

    PubMed  CAS  Google Scholar 

  • García-Toledo A, Babich H, Stotzky G (1985) Training of Rhizopus stolonifer and Cunninghamella blakesleeana to copper: Cotolerance to cadmium, cobalt, nickel, and lead. Can J Microbiol 31:485–492.

    Google Scholar 

  • Gerhardsson L, Wester PO, Nordberg GF, Brune D (1984) Chromium, cobalt and lanthanum in lung, liver and kidney tissue from decreased smelter workers. Sci Total Environ 37:233–246.

    PubMed  CAS  Google Scholar 

  • Gheysens B, Auwerx J (1985) Cobalt-induced bronchial asthma in diamond polishers. Chest 88:740–744.

    PubMed  CAS  Google Scholar 

  • Gilman JPW, Ruckerbauer GM (1962) Metal carcinogenesis. I. Observations on the carcinogenicity of a refinery dust, cobalt oxide, and colloidal thorium dioxide. Cancer Res 22:152–157.

    PubMed  CAS  Google Scholar 

  • Giovannini E, Principato GB, Ambrosini V, Grassi G, Dell’Agata M (1978) Early effects of cobalt chloride treatment on certain blood parameters and on urine composition. J Pharmacol Expt Ther 206:398–404.

    CAS  Google Scholar 

  • Goldner MG, Volk BW, Lazarus SS (1952) The effects of cobaltous chloride on the blood sugar and α-cells in the pancreatic islets of rabbits. Metabolism 1:544–548.

    PubMed  CAS  Google Scholar 

  • Gray P, Scully JM (1941) The suppressive effect of cobalt on the amnion in early chick development. Anat Rec 79:26–31.

    Google Scholar 

  • Gregus Z, Klaassen CD (1986) Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol Appl Pharmacol 85:24–38.

    PubMed  CAS  Google Scholar 

  • Grice HC, Goodman T, Munro IC, Wiberg GS, Morrison AB (1969) Myocardial toxicity of cobalt in the rat. Ann NY Acad Sci 158:189–194.

    Google Scholar 

  • Griffith WH, Pavcek PL, Mulford DJ (1942) The relation of the sulphur amino acids to the toxicity of cobalt and nickel in the rat. J Nutr 23:603–612.

    CAS  Google Scholar 

  • Gross RT, Spaet TA (1953) Cobaltous chloride in the treatment of sickle cell anemia. Stanford Med Bull 11:196–197.

    Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Ann Rev Neurosci 4:69–125.

    PubMed  CAS  Google Scholar 

  • Hall JL, Smith GB (1968) Cobalt heart disease. An electron microscopic and histochemical study in the rabbit. Arch Pathol 86:403–412.

    Google Scholar 

  • Hamilton-Koch W, Snyder RD, Lavelle JM (1986) Mental-induced DNA damage and repair in human diploid fibroblasts and Chinese hamster ovary cells. Chem Biol Interact 59:17–28.

    PubMed  CAS  Google Scholar 

  • Hartung M (1982) On the question of the pathogenic importance of cobalt for hard metal fibrosis of the lung. Int Arch Occup Environ Hlth 50:53–57.

    CAS  Google Scholar 

  • Hasegawa E, Smith C, Tephly TR (1970) Induction of hepatic mitochondrial ferrochelatase by phenobarbital. Biochem Biophys Res Commun 40:517–523.

    PubMed  CAS  Google Scholar 

  • Heath JC (1954) The effect of cobalt on mitosis in tissue culture. Expt Cell Res 6:311–320.

    CAS  Google Scholar 

  • Heath JC (1956) The production of malignant tumours by cobalt in the rat. Br J Cancer 10:668–673.

    PubMed  CAS  Google Scholar 

  • Heath JC (1960) The histogenesis of malignant tumours induced by cobalt in the rat. Br J Cancer 14:478–482.

    PubMed  CAS  Google Scholar 

  • Heath JC, Webb M, Caffrey M (1969) The interaction of carcinogenic metals with tissues and body fluids. Cobalt and horse serum. Br J Cancer 23:153–166.

    PubMed  CAS  Google Scholar 

  • Heath JC, Freeman MAR, Swanson SAV (1971) Carcinogenic properties of wear particles from prostheses made in cobalt-chromium alloy. Lancet 1:564–566.

    PubMed  CAS  Google Scholar 

  • Hoey MJ (1966) The effects of metallic salts on the histology and functioning of the rat testis. J Reprod Fert 12:461–471.

    CAS  Google Scholar 

  • Hoffman DJ, Niyogi SK (1977) Metal mutagens and carcinogens affect RNA synthesis rates in a distinct mannor. Science 198:513–514.

    PubMed  CAS  Google Scholar 

  • Holly RG (1955) Studies on iron and cobalt metabolism. JAMA 158:1349–1352.

    CAS  Google Scholar 

  • Ichikawa Y, Kusaka Y, Goto S (1985) Biological monitoring of cobalt exposure based on cobalt concentrations in blood and urine. Int Arch Occup Environ Hlth 55:269–276.

    CAS  Google Scholar 

  • Isom GE, Way JL (1974) Alteration in vivo glucose metabolism by cobaltous chloride. Toxicol Appl Pharmacol 27:131–139.

    PubMed  CAS  Google Scholar 

  • Johansson A, Lundberg M, Hellström PA, Camner P, Keyser TR, Kirton SE, Natush DFS (1980) Effect of iron, cobalt, and chromium dust on rabbit alveolar macrophages: A comparison with the effects of nickel. Environ Res 21:165–176.

    PubMed  CAS  Google Scholar 

  • Johansson A, Camner P, Jarstrand C, Wiernik A (1983) Rabbit alveolar macrophages after inhalation of soluble cadmium, cobalt, and copper. Environ Res 31:340–354.

    PubMed  CAS  Google Scholar 

  • Johansson A, Cursted T, Robertson B, Camner P (1984) Lung morphology and phospholipids after experimental inhalation of soluble cadmium, copper and cobalt. Environ Res 34:295–309.

    PubMed  CAS  Google Scholar 

  • Johansson A, Lundborg M, Wiernik A, Jarstrand C, Camner P (1986) Rabbit alveolar macrophages after long-term inhalation of soluble cobalt. Environ Res 41: 488–496.

    PubMed  CAS  Google Scholar 

  • Johansson A, Robertson B, Camner P (1987) Nodular accumulation of type II cells and inflammatory lesions caused by inhalation of low cobalt concentrations. Environ Res 43:227–243.

    PubMed  CAS  Google Scholar 

  • Kada T, Kanematsu N (1978) Reduction of N-methyl-N′-nitro-N-nitrosoguanidine-induced mutations by cobalt chloride in Escherichia coli. Proc Jap Acad Ser B 54:234–237.

    CAS  Google Scholar 

  • Kamboj VP, Amiya B (1964) Antitesticular effect of met and rare earth salts. J Reprod Fert 7:21–28.

    CAS  Google Scholar 

  • Kanematsu N, Hara M, Kada T (1980) Rec assay and mutagenicity studies on metal compounds. Mutat Res 77:109–116.

    PubMed  CAS  Google Scholar 

  • Kaplowitz N (1981) The importance and regulation of hepatic glutathione. J Biol Med 54:497–502.

    CAS  Google Scholar 

  • Kaplowitz N, Eberle DE, Petrini J, Touloukian J, Cowasce C, Kuhlenkamp J (1983) Factors influencing the efflux of hepatic glutathione into bile in rats. J Pharmacol Expt Ther 224:141–147.

    CAS  Google Scholar 

  • Kasantzis G (1981) Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis. Environ Hlth Perspect 40:143–161.

    Google Scholar 

  • Kennedy A, King R, Dornan JD (1981) Fatal myocardial disease associated with industrial exposure to cobalt. Lancet 1:412–414.

    PubMed  CAS  Google Scholar 

  • Kerfoot EJ, Fredrick WG, Domeier E (1975) Cobalt metal inhalation on miniature swine. Am Ind Hyg Assoc J 36:17–25.

    PubMed  CAS  Google Scholar 

  • Key MM (1961) Some unusual reactions in industry. Arch Dermatol 82:57–60.

    Google Scholar 

  • Kharab P, Singh I (1985) Genotoxic effects of potassium dichromate, sodium arsenite, cobalt chloride and lead nitrate in diploid yeast. Mutat Res 155:117–120.

    PubMed  CAS  Google Scholar 

  • Kleinberg W (1934) Hemopoietic effect of cobalt and cobalt-manganese compounds in rabbits. Am J Physiol 108:545–549.

    CAS  Google Scholar 

  • Knott P, Algar B, Zervas G, Telfer SB (1985) Trace Elements in Man and Animals, TEMA 5, Mills CF, Bremner I, Chesters JK (eds), Cwlth Agric Bur, Slough, UK, p 708.

    Google Scholar 

  • Komezynski L, Nowak H, Rejniak L (1963) Effect of cobalt, nickel and iron on mitosis in roots of broad bean (Vicia faba). Nature 198:1016–1017.

    Google Scholar 

  • Kreyling WG, Ferron GA, Haider B (1986) Metabolic fate of inhaled cobalt aerosols in beagle dogs. Hlth Phys 51:773–795.

    CAS  Google Scholar 

  • Kusaka Y, Ichikawa Y, Shirakawa T, Goto S (1986) Effect of hard metal dust on ventilatory function. Br J Ind Med 43:486–489.

    PubMed  CAS  Google Scholar 

  • Lammintausta K, Pitkänen OP, Kalimo K, Jansen CT (1985) Interrelationship of nickel and cobalt contact sensitization. Contact Dermatitis 13:148–152.

    PubMed  CAS  Google Scholar 

  • Lee C, Malpeli JG (1986) Somata selective lesions induced by cobaltous chloride: A parametric study. Brain Res 364:396–399.

    PubMed  CAS  Google Scholar 

  • Legrum W, Stuehmeier G, Netter KJ (1979) Cobalt as a modifier of microsomal monooxygenase in mice. Toxicol Appl Pharmacol 48:195–204.

    PubMed  CAS  Google Scholar 

  • Lindergren CC, Nagai S, Nagai H (1958) Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel. Nature 182:446–449.

    Google Scholar 

  • Llobet JM, Domingo JL (1983) Acute toxicity and hematologic and seric alterations from cobalt salts in rats. Rev Esp Fisiol 39:291–298.

    PubMed  CAS  Google Scholar 

  • Llobet JM, Domingo JL, Corbella J (1985) Comparison of antidotal efficacy of chelating agents upon acute toxicity of cobalt (II) in mice. Res Commun Chem Pathol Pharmacol 50:305–308.

    PubMed  CAS  Google Scholar 

  • Llobet JM, Domingo JL, Corbella J (1986) Comparison of the effectiveness of several chelators after single administration on the toxicity, excretion and distribution of cobalt. Arch Toxicol 58:278–281.

    PubMed  CAS  Google Scholar 

  • Llobet JM, Domingo JL, Corbella J (1988) Comparative effects of repeated parenteral administration of several chelators on the distribution and excretion of cobalt. Res Commun Chem Pathol Pharmacol 60:225–233.

    PubMed  CAS  Google Scholar 

  • Maines MD, Kappas A (1975) Cobalt stimulation of heme degradation in the liver. J Biol Chem 250:4171–4177.

    PubMed  CAS  Google Scholar 

  • Maines MD, Kappas A (1976a) Studies on the mechanism of induction of haem oxygenase by cobalt and other metal ions. Biochem J 154:125–131.

    PubMed  CAS  Google Scholar 

  • Maines MD, Janousek V, Tomio JM, Kappas A (1976b) Cobalt inhibition of synthesis and induction of (δ-aminolevulinate synthase in liver. Proc Natl Acad Sci (USA) 73:1499–1503.

    CAS  Google Scholar 

  • Maines MD, Kappas A (1977a) Regulation of heme pathway enzymes and cellular glutathione content by metals that do not chelate with tetrapyrroles: Blockade of metal effects by thiols. Proc Natl Acad Sci (USA) 74:1875–1878.

    CAS  Google Scholar 

  • Maines MD, Kappas A (1977b) Metals as regulators of heme metabolism. Science 198:1215–1221.

    PubMed  CAS  Google Scholar 

  • Maines MD, Kappas A (1977c) Regulation of cytochrome P-450-dependent microsomal drug metabolism enzymes by nickel, cobalt and iron. Clin Pharmacol Ther 22:780–790.

    PubMed  CAS  Google Scholar 

  • Malpeli JG, Burch BD (1982) Cobalt destroys neurons without destroying fibers of passage in the lateral geniculate nucleus of the cat. Neurosci Lett 32:29–34.

    PubMed  CAS  Google Scholar 

  • Malpeli JG (1983) Activity of cells in area 17 of the cat in absence of input from layer A of lateral geniculate nucleus. J Neurophysiol 49:595–610.

    PubMed  CAS  Google Scholar 

  • Mangiarotti G, Canavese C, Salomone M, Thea A, Pacitti A, Gaido M, Calitri V, Pelizza D, Canavero W, Vercellone A (1986) Hypervitaminosis B12 in mainteneance hemodialysis patients receiving massive supplementation of vitamin B12. Int J Artif Organs 9:417–420.

    PubMed  CAS  Google Scholar 

  • Menné T (1980) Relationship between cobalt and nickel sensitization in hard metal workers. Contact Dermatitis 6:337–340.

    PubMed  Google Scholar 

  • Miller CW, Davis MW, Goldman A, Wyatt JP (1953) Pneumoconiosis in the tungstencarbide tool industry. Arch Ind Hyg Occup Med 8:453–465.

    CAS  Google Scholar 

  • Mine T, Kimura S, Osawa H, Ogata E (1986) Inhibition of the glycogenolitic effects of α-adrenergic stimulation and glucagon by cobalt ions in perfused rat liver. Life Sci 38:2285–2292.

    PubMed  CAS  Google Scholar 

  • Mitala JJ, Gautieri RF (1971) Apparent enzyme inhibition through enzyme-induction studies as a possible mode of action of certain cobalt compounds. J Pharm Sci 12:1878–1879.

    Google Scholar 

  • Mohiuddin SM, Taskar PK, Rheault M, Roy PE, Chenard J, Morin Y (1970) Experimental cobalt cardiomyopathy. Am Heart J 80:532–543.

    PubMed  CAS  Google Scholar 

  • Mollenhauer HH, Corner DE, Clark DE, Hare MF, Elissalde MH (1985) Effects of dietary cobalt on testicular structure. Virchows Arch [Cell Pathol] 49:241–248.

    CAS  Google Scholar 

  • Morin Y, Daniel P (1967) Quebec beer-drinkers’ cardiomyopathy: Ethiological considerations. Can Med Assoc J 97:926–928.

    PubMed  CAS  Google Scholar 

  • Morin Y, Tetu A, Mercier G (1971) Cobalt cardiomyopathy: clinical aspects. Br Heart J 33(Suppl): 175–178.

    PubMed  Google Scholar 

  • Morgan LG (1983) A study into the health and mortality of men exposed to cobalt and oxides. J Soc Occup Med 33:181–186.

    PubMed  CAS  Google Scholar 

  • Muñoz-Calvo R, Valcazar A, Lucas J (1973) Effect of cobalt chloride intoxication on seric lipids level and other parameters. Rev Esp Fisiol 29:61–64.

    PubMed  Google Scholar 

  • Mur JM, Moulin JJ, Charruyer-Seinerra MP, Lafitte J (1987) A cohort mortality study among cobalt and sodium workers in an electrochemical plant. Am J Ind Med 11:75–81.

    PubMed  CAS  Google Scholar 

  • Nakamura H (1962) Adaptation of yeast to cadmium. V. Characteristics of RNA and nitrogen metabolism in the resistance. Mem Konan Univ Sci Ser 6:19–31.

    Google Scholar 

  • Nation JR, Bourgeois AG, Clark DE, Hare MF (1983) The effects of chronic cobalt exposure on behavior and metalothionein levels in the adult rat. Neurobehav Toxicol Teratol 5:9–15.

    PubMed  CAS  Google Scholar 

  • Nilsson K, Jensen BS, Carlsen L (1985) The migration chemistry of cobalt. Eur Appl Res 7:23–86.

    CAS  Google Scholar 

  • Nishioka H (1975) Mutagenic activities of metal compounds in bacteria. Mutat Res 31:185–189.

    PubMed  CAS  Google Scholar 

  • Nofre C, Clément JM, Cier A (1963) Toxicité comparée de quelques ions métalliques et de leur chélate a l’acide éthylènediaminetétracétique. Path Biol 11:853–865.

    CAS  Google Scholar 

  • Ogawa HY, Tsuruta S, Niyitani Y, Mino H, Sakata K, Kato Y (1987) Mutagenicity of metals salts in combination with 9-amino-acridine in Salmonella typhimurium. Jap J Genet 62:159–162.

    Google Scholar 

  • Orten JM, Underhill FA, Mugrage ER, Lewis RC (1933) Blood volume studies in cobalt polycythemia. J Biol Chem 99:457–463.

    CAS  Google Scholar 

  • Orten JM (1936) On mechanism of hematopoietic action of cobalt. Am J Physiol 114:414–422.

    CAS  Google Scholar 

  • Orten JM, Bucciero MC (1948) The effect of cysteine, histidine, and methionine on the production of polycythemia by cobalt. J Biol Chem 176:961–968.

    PubMed  CAS  Google Scholar 

  • Parry KE, Wood RKS (1958) The adaptation of fungi to fungicides: adaptation to copper and mercury salts. Ann Appl Biol 46:446–456.

    CAS  Google Scholar 

  • Paternain JL, Llobet JM, Domingo JL, Corbella J (1985) Effects of cobalt (II) on rat fertility, gestation, parturition, neonatal viability and growth rate. Rev Toxicol 2:93–103.

    Google Scholar 

  • Paternain JL, Domingo JL, Corbella J (1988) Developmental toxicity of cobalt in the rat. J Toxicol Environ Hlth 24:193–200.

    CAS  Google Scholar 

  • Paton GR, Allison AC (1972) Chromosome damage in human cell cultures induced by metal salts. Mutat Res 16:332–336.

    PubMed  CAS  Google Scholar 

  • Payne LR (1977) The hazards of cobalt. J Soc Occup Med 27:20–25.

    PubMed  CAS  Google Scholar 

  • Pitkänen A, Saano V, Hyvönen K, Airaksinen MM, Riekinnen PJ (1987) Decreased GABA, benzodiazepine, and picrotoxinin receptor binding in brains of rats after cobalt-induced epilepsy. Epilepsia 28:11–16.

    PubMed  Google Scholar 

  • Popov LN (1977) An experimental study of the effects of low concentrations of metallic cobalt aerosols on the animal organism. Gig Sanit 4:97–98.

    PubMed  Google Scholar 

  • Post JT (1955) Prevention of cobalt-induced polycythemia in rats by calcium ethylene diaminetetraacetic acid. Proc Soc Exp Biol Med 90:245–246.

    PubMed  CAS  Google Scholar 

  • Prazmo W, Balbin E, Baranowska H, Ejchart A, Putrament A (1975) Manganese mutagenesis in yeast. II. Conditions of induction and characteristics of mitochondrial respiratory deficient Saccharomyces cerevisiae mutants induced with manganese and cobalt. Genet Res Camb 26:21–29.

    CAS  Google Scholar 

  • Putrament A, Baranowska H, Ejchart A, Jachymczyk N (1977) Manganese mutagenesis in yeast. VI. Mn2+ uptake, mitDNA replication and ER induction. Comparison with other divalent cations. Mol Gen Genet 151:69–76.

    PubMed  CAS  Google Scholar 

  • Rhoads K, Sanders CL (1985) Lung clearance, translocation, and acute toxicity of arsenic, beryllium, cadmium, cobalt, lead, selenium, vanadium, and ytterbium oxides following deposition in rat lung. Environ Res 36:359–378.

    PubMed  CAS  Google Scholar 

  • Ridgway LP, Karnofsky DA (1952) The effects of metals on the chick embryo: toxicity and production of abnormalities in development. Ann NY Acad Sci 55:203–215.

    PubMed  CAS  Google Scholar 

  • Rona G (1971) Experimental aspects of cobalt cardiomyopathy. Br Heart J 33(Suppl): 171–174.

    PubMed  Google Scholar 

  • Rona G, Chappel CI (1973) Pathogenesis and pathology of cobalt cardiomyopathy. In: Bajusz E, Rona G (eds) Recent Advances in Studies on Cardiac Structure and Metabolism. University Park Press, Baltimore, MD, pp 407–422.

    Google Scholar 

  • Ross OB, Philips PH, Bohstedt G, Cunha TJ (1944) Congenital malformations, syndactylism, talipes, and paralysis agitants of nutritional origin in swine. J Anim Sci 3:406–414.

    CAS  Google Scholar 

  • Roto P (1980) Asthma, symptoms of chronic bronchitis and ventilatory capacity among cobalt and zinc production workers. Scand J Work Environ Health Suppl 1:1–49.

    Google Scholar 

  • Rystedt I (1979) Evaluation and relevance of isolated test reactions to cobalt. Contact Dermatitis 5:233–238.

    PubMed  CAS  Google Scholar 

  • Rystedt I, Fisher T (1983) Relationship between nickel and cobalt sensitization in hard metal workers. Contact Dermatitis 9:195–200.

    PubMed  CAS  Google Scholar 

  • Sandusky GE, Henk WG, Roberts ED (1981) Histochemistry and ultrastructure of the heart in experimental cobalt cardiomyopathy in the dog. Toxicol Appl Pharmacol 61:89–98.

    PubMed  CAS  Google Scholar 

  • Sardana MK, Drummond GS (1986) Tryptophan pyrrolase in heme metabolism. Comparative actions of inorganic tin and cobalt and their protoporphyrin chelates on tryptophan pyrrolase in liver. Biochem Pharmacol 35:473–478.

    PubMed  CAS  Google Scholar 

  • Sardana MK, Kappas A (1987) Dual control mechanism for heme oxygenase: Tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver. Proc Natl Acad Sci (USA) 84:2464–2468. Scansetti G, Lamon S, Talarico S, Botta GC, Spinelli P, Sulotto F, Fantoni F (1985)

    CAS  Google Scholar 

  • Urinary cobalt as a measure of exposure in the hard metal industry. Int Arch Occup Environ Hlth 57:19–26.

    CAS  Google Scholar 

  • Schade SG, Felsher BF, Glader BE, Conrad ME (1970) Effect of cobalt upon iron absorption. Proc Soc Exp Biol Med 34:741–743.

    Google Scholar 

  • Scharschmidt BG, Gollan JL (1979) Current concepts of bilirubin metabolism and hereditary hyperbilirubinemia. In: Popper H, Schaffner F (eds) Progress in Liver Diseases. Grune & Stratton, New York. pp 187–212.

    Google Scholar 

  • Schroeder HA, Nason AP, Tipton IH (1967) Essential trace metals in man: Cobalt. J Chron Dis 20:869–890.

    PubMed  CAS  Google Scholar 

  • Schultz PN, Warren G, Kosso C, Rogers S (1982) Mutagenicity of a serie of hexacoordinate cobalt (III) compounds. Mutat Res 102:393–400.

    PubMed  CAS  Google Scholar 

  • Schultze MO (1940) Metallic elements and blood formation. Physiol Rev 20:37–67.

    CAS  Google Scholar 

  • Shabaan AA, Marks V, Lancaster MC, Duffeu GN (1977) Fibrosarcomas induced by cobalt chloride in rats. Lab Anim 11:43–49.

    PubMed  CAS  Google Scholar 

  • Singh NK, Chhabra R, Data K (1987) Nonenzymatic synthesis of δ-aminolevulinate (ALA) by cobalt (Co2+). Biochem Biophys Res Commun 143:439–446.

    PubMed  CAS  Google Scholar 

  • Sirover MA, Loeb LA (1976) Infidelity of DNA synthesis in vitro: Screening for potential metal mutagens or carcinogens. Science 194:1434–1436.

    PubMed  CAS  Google Scholar 

  • Sjögren I, Hillerdal G, Andersson A, Zetterström (1980) Hard metal lung disease: importance of cobalt in coolants. Thorax 35:653–659.

    PubMed  Google Scholar 

  • Smith RJ, Contrera JF (1974) Cobalt-induced alterations in plasma proteins, proteases and kinin system of the rat. Biochem Pharmacol 23:1095–1103.

    PubMed  CAS  Google Scholar 

  • Southern LL, Baker DH (1982) Eimeria acervulina infection in chichs fed cobalt in the presence or absence of excess dietary methionine. J Nutr 112:1220–1223.

    PubMed  CAS  Google Scholar 

  • Southern LL, Baker DH (1983) Eimeria acervulina infection in chicks fed deficient or excess levels of manganese. J Nutr 113:172–177.

    PubMed  CAS  Google Scholar 

  • Speijers GJA, Krajnc EI, Berkvens JM, Van Logten MJ (1982) Acute oral toxicity of inorganic cobalt compounds in rats. Food Chem Toxic 20:311–314.

    CAS  Google Scholar 

  • Stelzer KJ, Klaassen CD (1985) Effect of cobalt on biliary excretion of bilirubin and glutathione. J Toxicol Environ Hlth 15:813–822.

    CAS  Google Scholar 

  • Taylor A, Marks V (1978) Cobalt: A review. J Hum Nutr 32:165–177.

    PubMed  CAS  Google Scholar 

  • Telib M, Schmidt FH (1973) Effects of cobaltous chloride in laboratory animals. II. Effect on blood sugar, plasma insulin and plasma lipids in rabbits. Endokrinologie 61:395–402.

    PubMed  CAS  Google Scholar 

  • Tephly TR, Hibbeln P (1971) The effect of cobalt chloride administration on the synthesis of hepatic microsomal cytochrome P-450. Biochem Biophys Res Commun 42:589–595.

    PubMed  CAS  Google Scholar 

  • Trengove CL, Judson GJ (1985) Trace element supplementation of sheep: evaluation of various copper supplements and a soluble glass bullet containing copper, cobalt and selenium. Aust Vet J 62:321–324.

    PubMed  CAS  Google Scholar 

  • Tso WW, Fung WP (1981) Mutagenicity of metallic cations. Toxicol Lett 8:195–200.

    PubMed  CAS  Google Scholar 

  • Underwood EJ (1975) Cobalt. Nutr Rev 33:65–69.

    PubMed  CAS  Google Scholar 

  • Van Cutsem EJ, Ceuppens JL, Lacquet LM, Demedts M (1987) Combined asthma and alveolitis induced by cobalt in a diamond polisher. Eur J Respir Dis 70:54–61.

    PubMed  Google Scholar 

  • Veien NK, Hattel T, Justesen O, Norholm A (1987) Oral challenge with nickel and cobalt in patients with positive patch tests to nickel and/or cobalt. Acta Derm Venereol (Stockh) 67:321–325.

    CAS  Google Scholar 

  • Vilaplana J, Grimait F, Romaguera C, Mascaró JM (1987) Cobalt content of household cleaning products. Contact Dermatitis 16:139–141.

    PubMed  CAS  Google Scholar 

  • Webb M (1962) The biological action of cobalt and other metals. III. Chelation of cations by dihydrolipoic acid. Biochim Biophys Acta 65:47–65.

    PubMed  CAS  Google Scholar 

  • Webb M (1964) The biological action of cobalt and other metals. IV. Inhibition of α-oxoglutarate dehydrogenase. Biochim Biophys Acta 89:431–446.

    PubMed  CAS  Google Scholar 

  • Wehner AP, Busch RH, Olson RJ, Craig DK (1977) Chronic inhalation of cobalt oxide and cigarette smoke hamsters. Am Ind Hyg Assoc J 38:338–346.

    PubMed  CAS  Google Scholar 

  • Weinzierl SM, Webb M (1972) Interaction of carcinogenic metals with tisue and body fluids. Br J Cancer 26:279–291.

    PubMed  CAS  Google Scholar 

  • White IG (1955) The toxicity of heavy metals to mammalian spermatozoa. Aust J Exp Biol 33:359–366.

    Google Scholar 

  • Whitton BA, Shehata FHA (1982) Influence of cobalt, nickel, copper and cadmium on the blue-green alga Anacystis nidulans. Environ Pollut 27A:275–281.

    Google Scholar 

  • Wiberg GS, Munro IC, Méranger JC, Morrison AB, Grice HC (1969) Factors affecting the cardiotoxic potential of cobalt. Clin Toxicol 2:257–271.

    Google Scholar 

  • Zarafonetis CJ, Bartlett R, Brody GL (1965) Lipid mobilizer hormone in cobalt chloride hyperlipemia. JAMA 191:169–171.

    Google Scholar 

  • Yamagata N, Murata S, Torii T (1962) The cobalt content of the human body. J Rad Res (Tokyo) 3:4–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Domingo, J.L. (1989). Cobalt in the Environment and Its Toxicological Implications. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 108. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8850-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8850-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8852-4

  • Online ISBN: 978-1-4613-8850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics