Skip to main content

Gene Activation by 5-Azacytidine

  • Chapter
DNA Methylation

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

The nucleoside analog 5-azacytidine (5-aza-C) was first synthesized in Czechoslovakia in 1963 (Piskala and Sorm, 1964); it also has been isolated from streptoverticillium (Streptoverticillus ladakanus, Hanka et al. 1966; Bergy and Herr, 1966). 5-Aza-C differs from cytidine only by the inclusion of a nitrogen atom in the 5 position of the pyrimidine ring (Figure 9.1). It was originally developed for use as a cancer chemotherapeutic agent and is still-used in the treatment of certain types of acute myelogenous leukemia. However, recent interest in the drug has been directed toward its remarkable ability to induce the expression of repressed genes in eukaryotic cells and to act as an inhibitor of DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RLP, Fulton J, Kirk D: The effect of 5-azadeoxycytidine on cell growth and DNA methylation. Biochim Biophys Acta 1982; 697: 286–294.

    PubMed  CAS  Google Scholar 

  • Altanerova V: Virus production induced by various chemical carcinogens in a virogenic hamster cell line transformed by Rous sarcoma virus. J Natl Cancer Inst 1972; 49: 1375–1380.

    PubMed  CAS  Google Scholar 

  • Anderson EP: Nucleoside and nucleotide kinases; in Boyer PD (ed): The Enzymes. New York, Academic Press, 1973, vol 9 pp 49–96.

    Google Scholar 

  • Banerjee A, Benedict WF: Production of sister chromatid exchanges by various cancer chemotherapeutic agents. Cancer Res 1979; 39: 797–799.

    PubMed  CAS  Google Scholar 

  • Beisler JA: Isolation, characterization and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 1978; 21: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Beisler JA, Abbasi MM, Driscoll JS: Dihydro-5-azacytidine hydrochloride, a biologically active and chemically stable analog of 5-azacytidine. Cancer Treatment Rep 1976; 60: 1671–1674.

    CAS  Google Scholar 

  • Benedict WF, Banerjee A, Gardner A, Jones PA: Induction of morphological transformation in mouse C3H 101/2 clone 8 cells and chromosomal damage in hamster A(T1)Cl-3 cells by cancer chemotherapeutic agents. Cancer Res 1977; 37: 2202–2208.

    PubMed  CAS  Google Scholar 

  • Ben-Sasson SA, Klein G: Activation of the Epstein-Barr virus genome by 5-azacytidine in latently infected human lymphoid lines. Int J Cancer 1981; 28: 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Bergy ME, Herr RR: Microbial production of 5-azacytidine. II. Isolation and chemical structure. Antimicrob Ag Chemother 1966, pp 625–630.

    Google Scholar 

  • Bodner AJ, Ting RC, Gallo RC: Induction of differentiation of human promyelocytic leukemia cells (HL-60) by nucleosides and methotrexate. J Natl Cancer Inst 1981; 67: 1025–1030.

    PubMed  CAS  Google Scholar 

  • Bolander FF: The effect of 5-azacytidine on mammary gland differentiation in vitro. Biochem Biophys Res Commun 1983; 111: 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard J, Momparler RL: Incorporation of 5-Aza-21-deoxycytidine-51-triphosphate into DNA: interactions with mammalian DNA polymerase and DNA methylase. Mol Pharmacol 1983; 24: 109–114.

    PubMed  CAS  Google Scholar 

  • Boyd AW, Schrader JW: Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine. Nature 1982; 297: 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Caputto R: Nucleotide kinases, in Boyer PD, Lardy H, Myrback K (eds): The Enzymes. New York, Academic Press, 1962, vol 6 pp 133–138.

    Google Scholar 

  • Chabot GG, Bouchard J, Momparler RL: Kinetics of deamination of 5-aza21deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem. Pharmacol 1983; 32: 1327–1328.

    Article  PubMed  CAS  Google Scholar 

  • Chambers JC, Taylor JH: Induction of sister chromatid exchanges by 5-fluorodeox- ycytidine: correlation with DNA methylation. Chromosome 1982; 85: 603–609.

    Article  CAS  Google Scholar 

  • Chan KK, Giannini DD, Staroscik JA, Sadee W: 5-Azacytidine hydrolysis kinetics measured by high pressure liquid chromatography and “C-NMR spectroscopy. J Pharm Sci 1979; 68: 807–812.

    Article  PubMed  CAS  Google Scholar 

  • Charache S, Dover GJ, Smith KD, et al: Treatment of sickle cell anemia with 5azacytidine. Blood 1982; 60 (suppl 1): 449.

    Google Scholar 

  • Chou T-C, Burchenal JH, Fox JJ, Watanabe KA, Chu CK, Philips FS: Metabolism and effects of 5-(ß-D-ribofuranosyl) isocytosine in P815 cells. Cancer Res 1979; 39: 720–728.

    PubMed  CAS  Google Scholar 

  • Christman JK, Mendelsohn N, Herzog D, Schniederman N: Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells (HL-60). Cancer Res 1983; 43: 763–769.

    PubMed  CAS  Google Scholar 

  • Clough DW, Kunkel LM, Davidson RL: 5-Azacytidine induced reactivation of a Herpes Simplex thymidine kinase gene. Science 1982; 216: 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Compere SJ, Palmiter RD: DNA methylation controls the inducibility of the mouse metallothionein-1 gene in lymphoid cells. Cell 1981; 25: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Constantinides PG: Myogenic Conversion of Cultured Cells by Azapyrimidines. M.Sc. Thesis, University of Stellenbosch Medical School, South Africa, 1977.

    Google Scholar 

  • Constantinides PG, Jones PA, Gevers W: Functional striated muscle cells from nonmyoblast precursors following 5-azacytidine treatment. Nature 1977; 267: 364–366.

    Article  PubMed  CAS  Google Scholar 

  • Constantinides PG, Taylor SM, Jones PA: Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Devel Biol 1979; 66: 57–71.

    Article  Google Scholar 

  • Creusot F, Acs G, Christman JK: Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-21-deoxycytidine. J Biol Chem 1982; 257: 2041–2948.

    PubMed  CAS  Google Scholar 

  • DeSimone J, Heller P, Hall L, Zwiers D: 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci (USA) 1982; 79: 4428–4431.

    Article  CAS  Google Scholar 

  • Flatau E, Jones PA: Production of 5-azacytidine resistant cell lines (submitted). Friedman S: The effect of azacytidine on E. Coli DNA methylase. Biochem Biophys Res Commun 1979; 89: 1324–1333.

    Google Scholar 

  • Friedman S: The inhibition of DNA (Cytosine-5) Methylases by 5-Azacytidine—The effect of azacytosine-containing DNA. Mol Pharmacol 1981; 19: 314–320.

    PubMed  CAS  Google Scholar 

  • Frost P, Kerbel RS: The selection of strongly immunogenic “Tum-” variants from tumors at high frequency using 5-azacytidine. J Exptl Med (1984); (in press).

    Google Scholar 

  • Fucik V, Zandrael S, Sormova Z, Sorm F: Mutagenic effect of 5-azacytidine in bacteria. Coll Czech Chem Comm 1965; 30: 2883–2886.

    CAS  Google Scholar 

  • Gasson JC, Ryden T, Bourgeois S: Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line. Nature 1983; 302: 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM: 5-Azacytidine-induced re-expression of alleles on the inactive X-chromosome in a Mus musculus X M. caroli cell line. Exp Cell Res 1982;141:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Groudine M, Eisenman R, Weintraub H: Chromatin structure of endogenous retro-viral genes and activation by an inhibitor of DNA methylation. Nature 1981; 292: 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Halle S: 5-Azacytidine as a mutagen for arboviruses. J Virol 1968;2:1228–1229.

    PubMed  CAS  Google Scholar 

  • Hanka LJ, Evans JS, Mason DJ, Dietz A: Microbial production of 5-azacytidine. Production and biological activity. Antimicrob Ag Chemother 1966, pp 619–624.

    Google Scholar 

  • Harris M: Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell 1982; 29: 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JW, Steffen D, Gusella J, Tabin C, Bird S, Cowing D, Weinberg RA: DNA methylation affecting the expression of murine leukemia proviruses. J Virol 1982; 44: 144–157.

    PubMed  CAS  Google Scholar 

  • Israili ZH, Volger WR, Mingioli ES, Pirkle JL, Smithwick RW, Goldstein JH: The disposition and pharmacokinetics in humans of 5-azacytidine administered intravenously as a bolus or by continuous infusion. Cancer Res 1976; 36: 1453–1461.

    PubMed  CAS  Google Scholar 

  • Ivarie RD, Morris JA: Induction of prolactin deficient variants of CH3 rat pituitary tumor cells by ethyl methanesulfonate: reversion by 5-azacytidine a DNA methylation inhibitor. Proc Natl Acad Sci (USA) 1982; 79: 2967–2970.

    Article  CAS  Google Scholar 

  • Jones PA, Taylor SM: Hemimethylated duplex DNAs prepared from 5-azacytidine treated cells. Nucl Acids Res 1981; 9: 2933–2947.

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Taylor SM: Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Taylor SM, Mohandas T, Shapiro L I: Cell cycle specific reactivation of an inactive X-chromosome locus by 5-azadeoxycytidine. Proc Natl Acad Sci (USA) 1982; 79: 1215–1219.

    Article  CAS  Google Scholar 

  • Karon M, Benedict WF: Chromatid breakage: Differential effect of inhibitors of DNA synthesis during G2 phase. Science 1972; 178: 62–63.

    Article  PubMed  CAS  Google Scholar 

  • Landotph JR, Jones PA: Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T1/2 C18 and V79 cells. Cancer Res 1982; 42: 817–823.

    Google Scholar 

  • Lee TT, Karon M: Inhibition of protein synthesis in 5-azacytidine-treated HeLa cells. Biochem Pharmacol 1976; 25: 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Karon M, Momparler RL: Kinetic studies on phosphorylation of 5-azacytidine with the purified uridine-cytidine kinase from calf thymus. Cancer Res 1974; 34: 2482–2488.

    PubMed  CAS  Google Scholar 

  • Lester SC, Korn NJ, DeMars R: Derepression of genes on the human inactive X-chromosome: evidence for differences in locus-specific rates of derepression and rates of transfer of active and inactive genes after DNA-mediated transformation. Somatic Cell Genet, 1982; 8: 265–284.

    Article  PubMed  CAS  Google Scholar 

  • Ley TJ, DeSimone J, Anagnou NP, Heller GH, Humphries RK, Turner PH, Young NS, Heller P, Nienhius AW: 5-Azacytidine selectively increases ß-globin synthesis in a patient with ß + thalassemia. N Engl J Med 1982; 307: 1469–1475.

    Article  PubMed  CAS  Google Scholar 

  • Ley T, et al: Personal communication, 1983.

    Google Scholar 

  • Liacouras AS, Anderson EP: Uridine-cytidine kinase IV. Kinetics of the competition between 5-azacytidine and the 2 natural substrates. Mol Pharmacol 1979; 15: 331–340.

    PubMed  CAS  Google Scholar 

  • Li LH, Olin EJ, Buskirk HH, Rineke LM: Cytotoxicity and mode of action of 5azacytidine on L1210 leukemia. Cancer Res 1970; 2760–2769.

    Google Scholar 

  • Lin K-T, Momparler RL, Rivard GE: High performance liquid chromatographic analysis of chemical stability of 5-aza-21-deoxycytidine. J Pharm Sci 1981; 70: 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  • Lu L-JW, Chiang GH, Medina D, Randerath K: Drug effects on nucleic acid modification. 1. Specific effect of 5-azacytidine on mammalian transfer RNA modification in vivo. Biochem Biophys Res Commun 1976; 68: 1094–1101.

    Article  CAS  Google Scholar 

  • Lu L-JW, Randerath K: Effects of 5-azacytidine on transfer RNA methyltransferases. Cancer Res 1979; 39: 940–948.

    PubMed  CAS  Google Scholar 

  • Lu L-JW, Randerath K: Mechanism of 5-azacytidine induced transfer RNA cytosine5-methyltransferase deficiency. Cancer Res 1980; 40: 2701–2705.

    PubMed  CAS  Google Scholar 

  • Lu L-J, Tseng WC, Randerath K: Effects of 5-fluorocytidine on mammalian transfer RNA and transfer RNA methyltransferases. Biochem Pharmacol 1979; 28: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Macleod CL, Hyman R, Bourgeois S, Hays E: Differentiation of a T Lymphoma Line in vitro. UCLA Symposium, 1983.

    Google Scholar 

  • Marquardt H, Marquardt M: Induction of malignant transformation and mutagenesis in cell cultures by cancer chemotherapeutic agents. Cancer (Phil) 1977; 40: 1930–1934.

    Article  CAS  Google Scholar 

  • McGeady ML, Jhappan C, Ascocione R, Van de Woude GF: In vitro methylation of specific regions of the cloned moloney sarcoma virus genone inhibits its transforming activity. Cell Mol Biol 1982; 3: 305–314.

    Google Scholar 

  • Mohandas T, Sparkes RS, Shapiro LJ: Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation. Science 1981; 211: 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Momparler RL, Derse D: Kinetics of phosphorylation of 5-aza-21-deoxycytidine by deoxycytidine kinase. Biochem Pharmacol 1979; 28: 1443–1444.

    Article  PubMed  CAS  Google Scholar 

  • Momparler RL, Goodman J: In vitro cytotoxic and biochemical effects of 5-aza-21deoxycytidine. Cancer Res 1977; 37: 1636–1639.

    PubMed  CAS  Google Scholar 

  • Momparler RL, Siegel S, Avila F, Lee T, Karon, M: Effect of tRNA from 5-azacytidine treated hamster fibrosarcoma cells on protein synthesis in vitro in a cell free system. Biochem Pharmacol 1976; 25: 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Heidelberger C: Inhibition of induced differentiation of C3H/10T1/2 Clone 8 mouse embryo cells by tumor promoters. Cancer Res 1980; 40: 334–338.

    PubMed  CAS  Google Scholar 

  • National Cancer Institute: Bioassay of 5-azacytidine for possible carcinogenicity (Technical report series No. 42, DHEW Publ. No. [NIH] 78–842 ). Washington, DC, United States Government Printing Office, 1978.

    Google Scholar 

  • Nesnow S, Heidelberger C: The effects of modifiers of microsomal enzymes on chemical oncogenesis in cultures of C3H mouse cell lines. Cancer Res 1976; 36: 1801 1808.

    Google Scholar 

  • Niwa O, Sugahara T: 5-Azacytidine induction of mouse endogenous type C virus and suppression of DNA methylation. Proc Natl Acad Sci (USA) 1981; 78: 6290–6294.

    Article  CAS  Google Scholar 

  • Notari RE, DeYoung JL: Kinetics and mechanism of degradation of the antileukemic agent 5-azacytidine in aqueous solution. J Pharm Sci 1975; 64: 1148–1157.

    Article  PubMed  CAS  Google Scholar 

  • Piskala A, Sorm F: Nucleic acids components and their analogues. Synthesis of 1glycosyl derivatives of 5-azauracil and 5-azacytosine. Coll Czech Chem Commun 1964; 29: 2060–2067.

    CAS  Google Scholar 

  • Pithova P, Piskala A, Pitha J, Sorm F: Nucleic acids components and their analogues LXVI. Hydrolysis of 5-azacytidine and its connection with biological activity. Coll Czech Commun 1965; 30: 2801–2811.

    CAS  Google Scholar 

  • Pringle CR: Genetic characteristics of conditional lethal mutants of vesicular stomatitus virus induced by 5-fluorouracil, 5-aza-cytidine and ethyl methane sulfonate. J Virol 1979; 5: 559–567.

    Google Scholar 

  • Reznikoff CA, Brankow DW, Heidelberger C: Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res 1973; 33: 3231–3238.

    PubMed  CAS  Google Scholar 

  • Rutter WJ, Pictet RL, Morris W: Towards molecular mechanisms of developmental processes. Ann Rev Biochem 1973; 42: 601–646.

    Article  PubMed  CAS  Google Scholar 

  • Sager R, Kovac P: Pre-adipocyte determination either by insulin or by 5-azacytidine. Proc Nall Acad Sci (USA) 1982; 79: 480–484.

    Article  CAS  Google Scholar 

  • Santi DV, Garrett CE, Barr PJ: On the mechanisms of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 1983; 33: 9–10.

    Article  PubMed  CAS  Google Scholar 

  • Silagi S, Graf LH: Induction of melanin and plasminogen activator by 5-azacytidine (abstract) J Cell Biol 1981; 91: 1023.

    Google Scholar 

  • Stoner GD, Shimkin MB, Kniazeff AJ, Weisberger JH, Weisburger EK, Gori GB: Test for carcinogenicity of food additives and chemotherapeutic agents by pulmonary tumor response in Strain A mice. Cancer Res 1973; 33: 3069–3085.

    PubMed  CAS  Google Scholar 

  • Tanaka M, Hibasami H, Nagai J, Ikeda T: Effects of 5-azacytidine on DNA methylation in Ehrlichs’ ascites tumor cells. Aust J Exp Biol Med Sci 1980; 58: 391–396.

    Article  PubMed  Google Scholar 

  • Taylor SM, Jones PA: Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 1979; 17: 771–779.

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA: Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 1982a; 111: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA: Mechanisms of action of eukaryotic DNA methyltransferase: use of 5-azacytosine containing DNA. J Mol Biol 1982b; 162: 679–692.

    Article  PubMed  CAS  Google Scholar 

  • Tennant RW, Olten JA, Myer FE, Rascati RJ: Induction of retrovirus gene expression in mouse cells by some chemical mutagens. Cancer Res 1982; 42: 3050–3055.

    PubMed  CAS  Google Scholar 

  • Tseng W-C, Medina D, Randerath K: Specific inhibition of transfer RNA methylation and modification in tissues of mice treated with 5-fluorouracil. Cancer Res 1978; 38: 1250–1257.

    PubMed  CAS  Google Scholar 

  • Venolia L, Gartler SM, Wassman ER, Yen P, Mohandas T, Shapiro LJ: Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proc Natl Acad Sci (USA) 1982; 79: 2352–2354.

    Article  CAS  Google Scholar 

  • Vesely J, Cihak A: High frequency induction in vivo of mouse leukemia in the AKR strain by 5-azacytidine. Experimentia 1973; 29: 1132–1133.

    Article  CAS  Google Scholar 

  • Vesely J, Cihak A: 5-Azacytidine: mechanism of action and biological effects in mammalian cells. Pharmac. Ther 1978; 2: 813–840.

    CAS  Google Scholar 

  • Viegas-Pequignot E, Dutrillaux B: Segmentation of human chromosomes induced by 5-ACR (5-azacytidine). Human Genet 1975; 34: 247–254.

    Article  Google Scholar 

  • Viegas-Pequignot E, Dutrillaux B: Detection of G-C rich heterochromatin by 5-azacytidine in mammals. Human Genet 1981; 57: 134–137.

    Article  CAS  Google Scholar 

  • Weiss JW, Pitot HC: Alteration of ribosomal precursor RNA in Novikoff hepatoma cells by 5-azacytidine. Studies on methylation of 45S and 32S RNA. Arch Biochem Biophys 1974; 165: 588–596.

    Article  PubMed  CAS  Google Scholar 

  • Weiss JW, Pitot HC: Effects of 5-azacytidine on nucleolar RNA and preribosomal particles in Novikoff hepatoma cells. Biochemistry 1975; 14: 316–326.

    Article  PubMed  CAS  Google Scholar 

  • Wilson VL, Jones PA: DNA methylation decreases in aging but not in immortal cells. Science 1983; 220: 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  • Wilson VL, Momparler RL, Jones PA: Inhibiton of DNA methylation of L1210 leukemic cells by 5-aza-21-deoxycytidine: A possible mechanism of chemotherapeutic action. Cancer Res 1983; 43: 3493–3496.

    PubMed  CAS  Google Scholar 

  • Wolf SF, Migeon BR: Studies on X chromosome DNA methylation in normal human cells. Nature 1982; 295: 667–672.

    Article  PubMed  CAS  Google Scholar 

  • Woodcock DM, Adam JK, Allan RG, Cooper IA: Effect of several inhibitors of enzymatic DNA methylation on the in vivo methylation of different classes of DNA sequences in a cultured human cell line. Nucl Acids Res 1983; 11: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Worton RG, Grant SA, Duff C: Gene inactivation and reactivation at the EMT locus in Chinese hamster cells, in Sternberg NL, Pearson ML, (eds): Gene Transfer and Cancer. New York, Raven Press, (in press, 1983).

    Google Scholar 

  • Zadrazil S, Fucik V, Bartl P, Sormova Z, Sorm F: The structure of DNA from Escherichia Coli cultured in the presence of 5-azacytidine. Biochim Biophys Acta 1965; 108: 701–703.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Jones, P.A. (1984). Gene Activation by 5-Azacytidine. In: Razin, A., Cedar, H., Riggs, A.D. (eds) DNA Methylation. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8519-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8519-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8521-9

  • Online ISBN: 978-1-4613-8519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics