Skip to main content

Methylation of Prokaryotic DNA

  • Chapter
DNA Methylation

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

The biological function of methylated bases in DNA of prokaryotes appears to be quite different than that of eukaryotes. In this chapter, most of the information presented is derived from studies with Escherichia coli K-12 simply because more is known about DNA methylation in this organism than in any other one. Some data from certain E. coli bacteriophages also will be reviewed, in addition to selected aspects about DNA methylation in certain other prokaryotes. Other recent reviews that complement this one are by Razin and Friedman (1981) and Hattman (1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Cyt:

cytosine

C:

cytidine

Ade:

Adenine

5-aza-C:

5 azacytidine

References

  • Arraj JA, Marinus MG: Phenotypic reversal in dam mutants of Escherichia coli K12 by a recombinant plasmid containing the dam’ gene. J Bacteriol 1983; 153: 562–565.

    PubMed  CAS  Google Scholar 

  • Bale A, d’Alarcao M, Marinus MG: Characterization of DNA adenine methylation mutants of Escherichia coli K-12. Mutat Res 1979; 59: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Krammer G, Knippers R: Asymmetric repair of bacteriophage T7 heteroduplex DNA. Molec Gen Genet 1981; 181: 541–547.

    Article  PubMed  CAS  Google Scholar 

  • Billen D: Methylation of the bacterial chromosome: an event at the “replication point?” J Mol Biol 1968; 31: 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Borek E, Srinivasan PR: The methylation of nucleic acids. Ann Rev Biochem 1966; 35: 275–297.

    Article  CAS  Google Scholar 

  • Boyer HW, Chow LT, Dugaiczyk, A, Hedgpeth J, Goodman HM: DNA substrate for the EcoRII restriction endonuclease and modification methylase. Nature New Biol 1973; 244: 40–43.

    Article  PubMed  CAS  Google Scholar 

  • Brooks JE, Blumenthal RM, Gingeras TR: The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene. Nucl Acids Res 1983; 11: 837–851.

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J: A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 1976; 9: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Claverys JP, Mejean V, Gasc AM, Galibert F, Sicard AM: Base specificity of mismatch repair in Streptococcus pneumoniae. Nucleic Acids Res 1981; 9: 2267–2280.

    Article  CAS  Google Scholar 

  • Cleary JM, Smith DW, Harding NE, Zyskind JW: Primary structure of the chromosomal origins (oriC) of Enterobacter aerogenes and Klebsiella pneumoniae: Comparisons and evolutionary relationships. J Bacteriol 1982; 150: 1467–1471.

    PubMed  CAS  Google Scholar 

  • Coulondre C, Miller JM, Farrabaugh PJ, Gilbert W: Molecular basis of base substitution hotspots in Escherichia coli. Nature 1978; 274: 775–780.

    CAS  Google Scholar 

  • Degnen ST, and Morris NR: Deoxyribonucleic acid methylation and development in Caulobacter bacteroides. J Bacteriol 1973; 116: 48–53.

    CAS  Google Scholar 

  • Doskocil J, Sormova Z: The occurence of 5-methylcytosine in bacterial deoxyribonucleic acids. Biochim Biophys Acta 1965; 95: 513–515.

    PubMed  CAS  Google Scholar 

  • Dreiseikelmann B, Eichenlaub R, Wackernagel W: The effect of differential methylation by Escherichia coli of plasmid DNA and phage T7 and X DNA on the cleavage by restriction endonuclease Mbol from Moraxella bovis. Biochim Biophys Acta 1979; 562: 418–428.

    CAS  Google Scholar 

  • Dreiseikelmann B, Wackernagel W: Absence in Bacillus subtilis and Staphylococcus aureus of the sequence-specific deoxyribonucleic acid methylation that is conferred in Escherichia coli K-12 by the dam and dcm enzymes. J Bacteriol 1981; 147: 259–261.

    PubMed  CAS  Google Scholar 

  • Duncan BK, Miller JH: Mutagenic deamination of cytosine residues in DNA. Nature 1980; 287: 560–561.

    Article  PubMed  CAS  Google Scholar 

  • Dunn DB, Smith JD: Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 1955; 175: 336–337.

    CAS  Google Scholar 

  • Friedman S: The effect of 5-azacytidine on E. coli DNA methylase. Biochem Biophys Res Commun 1979; 89: 1327–1333.

    Article  Google Scholar 

  • Friedman S: The inhibition of DNA (cytosine-5) methylases by 5-azacytidine. The effect of azacytosine-containing DNA. Mol Pharmacol 1981; 19: 314–320.

    PubMed  CAS  Google Scholar 

  • Friedman S: Bactericidal effect of 5-azacytidine on Escherichia coli carrying EcoRII restriction-modification enzymes. J. Bacteriol 1982; 151: 262–268.

    PubMed  CAS  Google Scholar 

  • Fujimoto D, Srinivasan PR, Borek E: On the nature of the deoxyribonucleic acid methylases. Biological evidence for the multiple nature of enzymes. Biochemistry 1982; 4: 2849–2865.

    Article  Google Scholar 

  • Ganesan AT: Uptake, restriction, modification and recombination of DNA molecules during transformation in B. subtilis, in Ganesan AT, Hoch J (eds). Molecular Cloning and Gene Regulation in Bacilli. New York, Academic Press, 1982.

    Google Scholar 

  • Geier GE, Modrich P: Recognition sequence of the dam methylase of Escherichia coil K-12 and mode of cleavage of Dpnl endonuclease. J Biol Chem 1979; 254: 1408–1413.

    PubMed  CAS  Google Scholar 

  • Glickman BW, van den Eisen P, Radman M: Induced mutagenesis in dam“ - mutants of Escherichia coli, a role of 6-methyladenine residues in mutation avoidance. Mol Gen Genet 1978; 163: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Glickman BW: Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyladenine residues in their DNA. An altered mutational spectrum in dam -mutants. Mutation Res 1979; 61: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Glickman BW, Radman M: Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci USA 1980; 77: 1063–1067.

    Article  PubMed  CAS  Google Scholar 

  • Glickman BW: Methylation instructed mismatch correction as a postreplication error avoidance mechanism in Escherichia coli, in Lemontt JF, Generoso M (eds): Molecular and Cellular Mechanisms of Mutagenesis. New York, Plenum Press, 1982, pp 65–88.

    Google Scholar 

  • Gold M, Hurwitz J, Anders M: The enzymatic methylation of RNA and DNA II. On the species specificity of the methylation enzymes. Proc Natl Acad Sci USA 1963; 50: 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Eichelmann MC, Lark KG: EndoR. Dpnl restriction of Escherichia coli DNA synthesized in vitro. Evidence that the ends of Okazaki pieces are determined by template deoxynucleotide sequence. J Mol Biol 1977; 117: 621–635.

    Article  PubMed  CAS  Google Scholar 

  • Goze A, Sedgwick S: Increased UV inducibility of SOS functions in a dam-3 mutant of Escherichia coli K-12 uvrA. Mutat Res 1978; 52: 323–331.

    Article  CAS  Google Scholar 

  • Hall RH: The Modified Nucleosides in Nucleic Acids. New York, Columbia University Press, 1971.

    Google Scholar 

  • Hall CV, Yanofsky C: Cloning and characterization of the gene for Escherichia coli tryptophanyl transfer ribonucleic acid synthase. J Bacteriol 1981; 148: 941–949.

    PubMed  CAS  Google Scholar 

  • Hattman S, Schlagman S, Cousens L: Isolation of a mutant of Escherichia coli defective in cytosine specific deoxyribonucleic acid methylase activity and partial protection of bacteriophage X against restriction by cells containing the N-3 drug resistance factor. J Bacteriol 1973; 115: 1130–1107.

    Google Scholar 

  • Hattman S: Partial purification of the Escherichia coli K-12 mec + deoxyribonucleic acid-cytosine methylase. In vitro methylation completely protects bacteriophage lambda deoxyribonucleic acid against cleavage by R. EcoRII. J Bacteriol 1977; 129: 1330–1334.

    CAS  Google Scholar 

  • Hattman S, Brooks JE, Masurekar M: Sequence specificity of the Pl-modification methylase (M. EcoPI) and the DNA methylase (M. Eco dam) controlled by the E. coli dam-gene. J Mol Biol 1978; 126: 367–380.

    Article  PubMed  CAS  Google Scholar 

  • Hattman S, Gribbin C, Hutchinson CA III: In vivo methylation of bacteriophage 4) X174. J Virology 1979; 32: 845.

    PubMed  CAS  Google Scholar 

  • Hattman S: DNA methylation, in Boyer PD (ed): The Enzymes. New York, Academic Press, 1981, pp 15A, 517–548.

    Google Scholar 

  • Hattman S: DNA methyltransferase-dependent transcription of the phage Mu mom gene. Proc Natl Acad Sci USA 1982; 79: 5518–5521.

    Article  PubMed  CAS  Google Scholar 

  • Hays JB, Korba BE: DNA from recombinogenic X bacteriophages generated by arl mutants of Escherichia coli is cleaved by single-strand specific endonuclease SI. Proc Natl Acad Sci USA 1979; 76: 6066–6070.

    Article  PubMed  CAS  Google Scholar 

  • Herman GE, Modrich P: Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J Bacteriol 1981; 145: 644–646.

    PubMed  CAS  Google Scholar 

  • Herman GE, Modrich P: Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzymes. J Biol Chem 1982; 257: 2605–2612.

    PubMed  CAS  Google Scholar 

  • Karran P, Marinus MG: Mismatch correction at 06-methylguanine residues in E. coli DNA. Nature 1982; 296: 868–869.

    Article  PubMed  CAS  Google Scholar 

  • Kondoh H, Ozeki H: Deletion and amber mutants of fla loci in Escherichia coli K12. Genetics 1976; 84: 403–421.

    PubMed  CAS  Google Scholar 

  • Konrad EB: Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol 1977; 130: 167–172.

    PubMed  CAS  Google Scholar 

  • Korba BE, Hayes JB: Partially deficient methylation of cytosine in DNA at CCA/ TGG sites stimulates genetic recombination of bacteriophage lambda. Cell 1982a; 28: 53l - 541.

    Article  Google Scholar 

  • Korba BE, Hayes JB: Novel mutations of Escherichia coli that produce recombinogenic lesions in DNA. V. Recombinogenic plasmids from arl mutants of Escherichia coli are unusually sensitive to nuclease SI and partially deficient in cytosine methylation at CC(A/T)GG sequence. J Mol Biol 1982b; 157: 213–235.

    Article  PubMed  CAS  Google Scholar 

  • Korch C, Hagblom P, Normark S: Sequence-specific DNA modification in Neisseria gonorrhoeae. J Bacteriol 1983; 155: 1324–1332.

    CAS  Google Scholar 

  • Kramer W, Schughart K, Fritz HJ: Directed mutagenesis of DNA cloned in filamentous phage: influence of hemimethylated GATC sites on marker recovery from restriction fragments. Nucl Acids Res 1982; 10: 6475–6485.

    Article  PubMed  CAS  Google Scholar 

  • Lacks S, Greenberg B: A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. J Biol Chem 1975; 250: 4060–4066.

    PubMed  CAS  Google Scholar 

  • Lacks S, Greenberg B: Complementary specificity of restriction endonuclease of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol 1977; 114: 153–168.

    Article  PubMed  CAS  Google Scholar 

  • Lacks SA, Dunn JJ, Greenberg B: Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 1982; 31: 327–336.

    CAS  Google Scholar 

  • Lark C: Studies on in vivo methylation of DNA in Escherichia coli 15T-. J Mol Biol 1968a; 31: 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Lark C: Effect of the methionine analogs, ethionine and nor-leucine, on DNA synthesis in Escherichia coli 15T- DNA synthesis in Escherichia coli 15T-. J Mol Biol 1968b; 31: 401–414.

    Article  PubMed  CAS  Google Scholar 

  • Lark C: Methylation-dependent DNA synthesis in Escherichia coli mediated by DNA polymerase I. J Bacteriol 1979; 137: 44–50.

    PubMed  CAS  Google Scholar 

  • Lieb M: A fine structure map of spontaneous and induced mutations in the lambda repressor gene including insertions of IS elements. Mol Gen Genet 1981; 184: 364–371.

    CAS  Google Scholar 

  • Lieb M: Specific mismatch correction in bacteriophage lambda crosses by very short patch repair. Molec Gen Genet 1983; 191: 118–125

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T: DNA repair enzymes. Ann Rev Biochem 1982; 51: 61–87.

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Mount DW: The SOS regulatory system of Escherichia coli. Cell 1982; 29: 11–22.

    CAS  Google Scholar 

  • Lu A-L, Clark S, Modrich P: Methyl-directed repair of DNA base pair mismatches in vitro. Proc Natl Acad Sci USA 1983; 80: 4639–4643.

    Article  PubMed  CAS  Google Scholar 

  • Lundblad V, Kleckner N: Mutants of Escherichia coli K-12 which affect excision of transposon Tn 10, in Lemontt JF, Generoso M (eds): Molecular and Cellular Mechanisms of Mutagenesis. New York, Plenum Press, 1982, pp 245–258.

    Google Scholar 

  • Marinus MG: Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet 1973; 127: 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Marinus MG, Morris NR: Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol 1973; 114: 1143–1150.

    PubMed  CAS  Google Scholar 

  • Marinus MG, Morris NR: Biological function for 6-methyladenine residues in the DNA of Escherichia coli K-12. J Mol Biol 1974; 85: 309–322.

    Article  PubMed  CAS  Google Scholar 

  • Marinus MG, Morris NR: Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K-12. Mutat Res 1975; 28: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Marinus MG: Adenine methylation of Okazaki fragments in Escherichia coli. J Bacteriol 1976; 128: 853–854.

    CAS  Google Scholar 

  • Marinus MG, Konrad EB: Hyper-recombination in dam mutants of Escherichia coli K-12. Mol Gen Genet (1976); 149: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Marinus MG: The function of methylated bases in DNA of Escherichia coli, in Seeberg E, Kleppe K (eds): in Chromosome Damage and Repair. New York, Plenum Press, 1981, pp 469–473.

    Google Scholar 

  • Marinus MG, Carraway M, Frey AZ, Brown L, Arraj JA: Insertion mutations in the dam gene of Escherichia coli K-12. Molec Gen Genet 1983;288–289.

    Google Scholar 

  • May MS, Hattman S: Deoxyribonucleic acid cytosine methylation by host and plasmid controlled enzymes. J Bacterial 1975a; 122: 129–138.

    CAS  Google Scholar 

  • May MS, Hattman S: Analysis of bacteriophage deoxyribonucleic acid sequences methylated by host and R-factor controlled enzymes. J Bacteriol 1975b; 123: 768–770.

    PubMed  CAS  Google Scholar 

  • McGraw BR, Marinus MG: Isolation and characterization of Dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12. Mol Gen Genet 1980; 178: 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Meijer M, Beck E, Hansen G, Bergman HEN, Messer W, von Meyenburg K, Scholler H: Nucleotide sequence of the origin of replication of the Escherichia coli K-12 chromosome. Proc Natl Acad Sci USA 1979; 76: 580–584.

    Article  PubMed  CAS  Google Scholar 

  • Muckerman CC, Springhorn SS, Greenberg B, Lacks SA: Transformation of restriction endonuclease phenotype in Streptococcus pneumoniae. J Bacteriol 1982; 152: 183–190.

    CAS  Google Scholar 

  • Nene V, Glass RE: Genetic studies on the ß subunit of Escherichia coli RNA polymerase. I. The effect of known, single amino acid substitutions in an essential protein. Mol Gen Genet 1982; 188: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H, Tomizawa JI, Maxam A: Detection of 5-methylcytosine in DNA sequences. Nucl Acids Res 1978; 5: 1479–1486.

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V: Two restriction endonucleases from Bacillus globiggi. Nucl Acids Res 1976; 3: 1747–1760.

    CAS  Google Scholar 

  • Plasterk RHA, Vrieling H, van de Putte P: Transcription initiation of Mu mom depends on methylation of the promoter region and a phage-coded transactivator. Nature 1983; 301: 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Pukkila P, Peterson J, Herman G, Modrich P, Meselson M: Effects of high levels of DNA adenine methylation on methyl directed mismatch repair in E. coli. Genetics 1983; 104: 571–582.

    CAS  Google Scholar 

  • Razin A, Goren D, Friedman J: Studies on the biological role of DNA methylation: inhibition of methylation and maturation of the bacteriophage 4X 174 by nicotinamide. Nucl Acids Res 1975; 2: 1967–1974.

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Riggs AD: DNA methylation and gene function. Science 1980; 210: 604–610.

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Urieli S, Pollack Y, Greenbaum Y, Glazer G: Studies on the biological role of DNA methylation; IV. Mode of methylation in E. coli. Nucl Acids Res 1980; 8: 1783–1792.

    Article  CAS  Google Scholar 

  • Razin A, Friedman J: DNA methylation and its possible biological roles. Prog Nucleic Acid Res Mol Biol 1981; 25: 33–52.

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ: Restriction and modification enzymes and their recognition sequences. Nucl Acids Res 1982; 10: r117 - r144.

    Article  PubMed  CAS  Google Scholar 

  • Rydberg, B: Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutat Res 1978; 52: 11–24.

    CAS  Google Scholar 

  • Ryokowski M, Meselson M: Methyl-directed DNA mismatch repair in E coli. Proc Natl Acad Sci USA (in press, 1984).

    Google Scholar 

  • Santi DV, Garrett CE, Barr PJ: On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 1983; 33: 9–10.

    Article  PubMed  CAS  Google Scholar 

  • Schein A, Bardahl BJ, Low M, Borek E: Deficiency of the DNA of Micrococcus radiodurons in methyladenine and methylcytosine. Biochem Biophys Acta 1972; 272: 481–485.

    PubMed  CAS  Google Scholar 

  • Schlagman S, Hattman S, May MS, Berger L: In vivo methylation by Escherichia coli mec + deoxyribonucleic acid-cytosine methylase protects X against in vitro cleavage by the RII restriction endonuclease (R. EcoRII). J Bacteriol 1976; 126: 990–996.

    PubMed  CAS  Google Scholar 

  • Schlagman SL, Hattman S: Molecular cloning of a functional dam + gene coding for phage T4 DNA adenine methylase. Gene 1983; 22: 139–156.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Gopinthan KP, Ramakrishnan T: Deoxyribonucleic acid methylation in Mycobacteria. J Bacteriol 1981; 148: 716–719.

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Oka A, Sugisaki H, Takanami M, Nishimura A, Yasuda S, Hirota Y: Nucleotide sequence of Escherichia coli K-12 replication origin. Proc Natl Acad Sci USA 1979; 76: 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JG: Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp Quant Biol 1979; 43: 77–90.

    PubMed  CAS  Google Scholar 

  • Szyf M, Greenbaum Y, Urieli-Shoval S, Razin A: Studies on the biological role of DNA methylation. V. The pattern of E. coli DNA methylation. Nucl Acids Res 1982; 10: 7247–7259.

    Article  PubMed  CAS  Google Scholar 

  • Toussaint A: DNA modification of bacteriophage Mu-1 requires both host and bacteriophage functions. J Virol 1977; 23: 825–826.

    PubMed  CAS  Google Scholar 

  • Urieli-Shoval S, Greenbaum Y, Razin A: Sequence and substrate specificity of iso- lated DNA methylases from Escherichia coli C. J Bacteriol 1983; 153: 274–280.

    CAS  Google Scholar 

  • Vovis GF, Lacks S: Complementary action of restriction enzymes Endo R.DpnI and Endo R.DpnII on bacteriophage fl DNA. J Mol Biol 1977; 155: 525–538.

    Article  Google Scholar 

  • Wagner RW, Meselson M: Repair tracts in mismatched DNA heteroduplexes Proc Natl Acad Sci USA 1976; 73: 4135–4139.

    Article  PubMed  CAS  Google Scholar 

  • Zieg J, Maples VF, Kushner SR: Recombination levels of Escherichia coli K-12 mutants deficient in various replication, recombination or repair genes. J Bacteriol 1978; 134: 958–966.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Marinus, M.G. (1984). Methylation of Prokaryotic DNA. In: Razin, A., Cedar, H., Riggs, A.D. (eds) DNA Methylation. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8519-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8519-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8521-9

  • Online ISBN: 978-1-4613-8519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics