Skip to main content

Methylases of the Type II Restriction-Modification Systems

  • Chapter
DNA Methylation

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

Most bacteria contain a small fraction (0.5–2%) of methylated cytosine or adenine bases in their chromosomes. Some of this methylation apparently plays a role in directing mismatch repair systems to the correct strands in newly replicated DNA. However, in many bacterial strains, a substantial fraction can be identified with host-specific restriction-modification (RM) systems. These ubiquitous systems play an important biological role in protecting bacteria against viral infections. Each system has two functional components: 1) a restriction endonuclease capable of recognizing sequence-specific sites in DNA and producing double-stranded cleavage; and 2) a modification enzyme recognizing the same DNA sites as the restriction enzyme and protecting them by modification. So far, all modifications found are either 5-methylcytosine or N6-methyladenine. The modification enzymes are methyltransferases, and AdoMet appears to be the exclusive methyl group donor. (For reviews, see Arber, 1974; Modrich, 1979; Smith, 1979; Modrich and Roberts, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AdoMet:

S-adenosylmethionine

Apr :

ampicillin resistance

N-AcdG:

N-acetyl-deoxyguanosine

dx:

deoxyxanthosine

kd:

kilodalton

kb:

kilobase

bp:

basepair

References

  • Arber W: DNA modification and restrictions in Cohn WE (ed): Progress in Nucleic Acid Research and Molecular Biology. New York, Academic Press, 1974, vol 14, pp 1–37.

    Google Scholar 

  • Berg OG, Winter RB, von Hippel PH: Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 1981; 20: 6929–6948.

    PubMed  CAS  Google Scholar 

  • Berkner KL, Folk WR: EcoRI cleavage and methylation of DNAs containing modified pyrimidines in the recognition sequence. J Bio Chem 1977; 252: 3185–3193.

    CAS  Google Scholar 

  • Berkner KL, Folk WR: Over methylation of DNAs by the EcoRI methylase. Nucl Acids Res 1978; 5: 435–450.

    PubMed  CAS  Google Scholar 

  • Blakesley RW, Wells RD: “Single-stranded” DNA from gX174 and M13 is cleaved by certain restriction endonucleases. Nature 1975; 257: 421–422.

    PubMed  CAS  Google Scholar 

  • Boyer HW, Chow LT, Dugaiczyk A, Hedgpeth J, Goodman HM: DNA substrate site for the EcoRII restriction endonuclease and modification methylase. Nature New Biol 1973; 244: 40–43.

    PubMed  CAS  Google Scholar 

  • Brooks JE, Roberts RJ: Modification profiles of bacterial genomes. Nucl Acids Res 1982; 10: 913–934.

    PubMed  CAS  Google Scholar 

  • Brooks JE, Blumenthal RM, Gingeras TR: The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene. Nucl Acids Res 1983; 11: 837–851.

    PubMed  CAS  Google Scholar 

  • Busslinger M, deBoer E, Wright S, Grosveld FF, Flavell RA: The sequence of GGCmCGG is resistant to MspI cleavage. Nucl Acids Res 1983; 11: 3559–3569.

    PubMed  CAS  Google Scholar 

  • Catterall JF, Welker NE: Isolation and properties of a thermostable restriction endonuclease (Endo R Bst 1503). J Bacteriol 1977; 129: 1110–1120.

    PubMed  CAS  Google Scholar 

  • Cheng, S-C, Modrich P: Positive-selection cloning vehicle useful for overproduction of hybrid proteins. JBacteriol 1983; 154: 1005–1008.

    CAS  Google Scholar 

  • Clark CM, Hartley BS: Purification, properties, and specificity of the restriction endonuclease from Bacillus stearothermophilus. Biochem J 1979; 177: 49–62.

    Google Scholar 

  • Close TJ, Rodriguez RL: Construction and characterization of the chloramphenicol resistance gene cartridge: A new approach to the transcriptional mapping of extra-chromosomal elements. Gene 1982; 20: 305–316.

    PubMed  CAS  Google Scholar 

  • Cregg JM, Nguyen AH, Ito J: DNA modification induced during infection of Bacillus subtilis by phage 03T. Gene 1980; 12: 17–24.

    PubMed  CAS  Google Scholar 

  • Dobritsa AP, Dobritsa SV: DNA protection with the DNA methylase M Bbvl from Bacillus brevis var. GB against cleavage by the restriction endonucleases Pstl and PvuII. Gene 1980; 10: 105–112.

    CAS  Google Scholar 

  • Dreiseikelmann B, Eichenlaub R, Wackernagel W: The effect of differential methylation by Escherichia coli of plasmid DNA and phage T7 and X DNA on the cleavage by restriction endonuclease MboI from Moraxella bovis. Biochem et Biophys. Acta 1979; 562: 418–428.

    CAS  Google Scholar 

  • Dugaiczyk A, Hedgpeth J, Boyer HW, Goodman HM: Physical identity of the SV40 deoxyribonucleic acid sequence recognized by the EcoRI restriction endonuclease and modification methylase. Biochem 1974; 13: 503–512.

    CAS  Google Scholar 

  • Ehrlich M, Wang RY-H: 5-Methylcytosine in eukaryotic DNA. Science 1981; 212: 1350–1357.

    PubMed  CAS  Google Scholar 

  • Feher Zs, Kiss A, Venetianer P: Expression of a bacterial modification methylase gene in yeast. Nature 1983; 302: 266–268.

    PubMed  CAS  Google Scholar 

  • Frankel A: Sequence-specific recognition of DNA by the Hinfl restriction endonuclease. Ph.D. Thesis, Baltimore, Johns Hopkins University, 1983.

    Google Scholar 

  • Gardner RC, Howarth AJ, Messing J, Shepherd RJ: Cloning and sequencing of restriction fragments generated by EcoRI* DNA 1982; 1: 109–115.

    PubMed  CAS  Google Scholar 

  • George J, Blakesley RW, Chirikjian JG: Sequence-specific endonuclease BamHI: Effect of hydrophobic reagents on sequence recognition and catalysis. J Biol Chem 1980; 255: 6521–6524.

    PubMed  CAS  Google Scholar 

  • Gingeras TR, Brooks JE: Cloned restriction/modification system from Pseudomonas aeruginosa. Proc Nat Acad Sci USA 1983; 80: 402–406.

    CAS  Google Scholar 

  • Godson GN, Roberts RJ: A catalogue of cleavages of 4X174, S13, G4, and ST-1 DNA by 26 different restriction endonucleases. Virology 1976; 73: 561–567.

    PubMed  CAS  Google Scholar 

  • Goodman HM, Greene PJ, Garfin DE, Boyer HW: DNA site recognition by the EcoRI restriction endonuclease and modification methylase, in Vogel HJ (ed): Nucleic Acid-Protein Recognition. New York, Academic Press, 1977, pp 239–259.

    Google Scholar 

  • Grachev SA, Mamaev SV, Gurevich AL, Lgoshun AV, Kolosov MN, Slyusar AG: Restriction endonuclease TaqXI from Therm us aquaticus. Bioorg Khim 1981; 7: 628–631.

    CAS  Google Scholar 

  • Greene PJ, Poonian MS, Nussbaum AL, et al: Restriction and modification of a self-complementary octanucleotide containing the EcoRI substrate. J Mol Biol 1975; 99: 237–261.

    PubMed  CAS  Google Scholar 

  • Greene PJ, Gupta M, Boyer HW, Tobias L, Garfin DE, Boyer HW, Goodman HM: Sequence analysis of the DNA encoding the EcoRI endonuclease and methylase. J Biol Chem 1981; 256: 2143–2153.

    PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Cedar H, Aharon R: Restriction enzyme digestion of hemimethylated DNA. Nucl Acids Res 1981; 9: 2509–2515.

    PubMed  CAS  Google Scholar 

  • Günthert U, Storm K, Bald R: Restriction and modification in Bacillus subtilis. Localization of the methylated nucleotide in the BsuRI recognition sequence. Eur J Biochem 1978; 90: 581–583.

    PubMed  Google Scholar 

  • Günthert U, Freund M, Trautner TA: Restriction and modification in Bacillus subtilis: Two DNA methyltransferases with BsuRI specificity. J Biol Chem 1981a; 256: 9340–9345.

    PubMed  Google Scholar 

  • Günthert U, Jentsch S, Freund M: Restriction and modification in Bacillus subtilis: Two DNA methyltransferases with BsuRI specificity. J Biol Chem 1981b; 256: 9346–9351.

    PubMed  Google Scholar 

  • Hattman S, Keister T, Gottehrer A: Sequence specificity of DNA methylases from Bacillus amyloliquifaciens and Bacillus brevis. J Mol Biol 1978; 124: 701–711.

    CAS  Google Scholar 

  • Heininger K, Horz W, Zachau HG: Specificity of cleavage by a restriction nuclease from Bacillus subtilis. Gene 1977; 1: 291–303.

    CAS  Google Scholar 

  • Herman GE, Modrich P: Escherichia coli dam methylase: Physical and catalytic properties of the homogeneous enzyme. J Biol Chem 1981; 257: 2605–2612.

    Google Scholar 

  • Horiuchi K, Zinder ND: Site-specific cleavage of single-stranded DNA by a Haemophilus restriction endonuclease. Proc Nat Acad Sci USA 1975; 72: 2555–2559.

    PubMed  CAS  Google Scholar 

  • Hsu M, Berg P: Altering the specificity of restriction endonuclease: Effect of replacing Mgt+ with Mn2+. Biochemistry 1978; 17: 131–138.

    PubMed  CAS  Google Scholar 

  • Hughes SG, Murray K: The nucleotide sequences recognized by endonucleases Aval and AvaII from Anabaena variabilis. Biochem J 1980; 185: 65–75.

    CAS  Google Scholar 

  • Jack WE, Rubin RA, Newman A, Modrich P: Structures and mechanisms of EcoRI DNA restriction and modification enzymes, in Chirikjian JG (ed): Gene Amplification and Analysis: Restriction Endonucleases. New York, Elsevier-North Holland, 1981, vol 1, pp 165–181.

    Google Scholar 

  • Jack WE, Terry BJ, Modrich P: Involvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence. Proc Nat Acad Sci USA 1982; 79: 4010–4014.

    PubMed  CAS  Google Scholar 

  • Janulaitis A, Povilionis P, Sasnauskas K: Cloning of the modification methylase gene of Bacillus centrosporus in Escherichia coli. 1982;Gene 20;197–204.

    PubMed  CAS  Google Scholar 

  • Jentsch S, Günthert U, Trautner TA: DNA methyltransferases affecting the sequence 5’CCGG. Nucl Acids Res 1981; 9: 2753–2759.

    PubMed  CAS  Google Scholar 

  • Keshet E, Cedar H: Effect of CpG methylation on Mspl. Nucl Acid Res 1983; 11: 3571–3580.

    CAS  Google Scholar 

  • Kiss A, Boldauf F: Molecular cloning and expression in Escherichia coli of two modification methylase genes of Bacillus subtilis. Gene 1983; 21: 111–119.

    CAS  Google Scholar 

  • Kosikh VG, Buryanov YI, Bayer AA: Cloning of the genes of EcoRII endonuclease and methylase. Dok! Akad Nauk USSR 1979; 247: 1269–1271.

    Google Scholar 

  • Kramarov VM, Smolyaninov VV: DNA methylase from Arthrobacter luteus screens DNA from the action of site-specific endonuclease Alul. Biokhimiya 1981; 46: 1526–1529.

    CAS  Google Scholar 

  • Lacks S, Greenberg B: Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol 1977; 114: 153–168.

    PubMed  CAS  Google Scholar 

  • Levy WP, Welker NE: Deoxyribonucleic acid modification methylase from Bacillus stearothermophilus. Biochemistry 1981; 20: 1120–1127.

    CAS  Google Scholar 

  • Lu A-L, Jack WE, Modrich P: DNA determinants important in sequence recognition by EcoRI endonuclease. J Biol Chem 1981; 256: 13200–13206.

    PubMed  CAS  Google Scholar 

  • Malyguine E, Vannier P, Yot P: Alteration of the specificity of restriction endonucleases in the presence of organic solvents. Gene 1980; 8: 163–177.

    PubMed  CAS  Google Scholar 

  • Mann MB, Smith HO: Specificity of HhaII and HaeIII DNA methylases. Nucl Acids Res 1977; 4: 4211–4222.

    PubMed  CAS  Google Scholar 

  • Mann MB, Rao RN, Smith HO: Cloning of restriction and modification genes in E. coli: The HhaII system from Haemophilus haemolyticus. 1978; Gene 3:97–112.

    PubMed  CAS  Google Scholar 

  • Mann MB, Smith HO: Specificity of DNA methylases from Haemophilus sp, in Usdin E, Borchardt R, Kreveling C (ed): Transmethylation. New York, Elsevier-North Holland, 1979, p 483.

    Google Scholar 

  • Mayer H: Optimization of the EcoRI*-activity of EcoRI endonuclease. FEBS Letters 1978; 90: 341–344.

    PubMed  CAS  Google Scholar 

  • McClelland M: The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucl Acids Res 1981; 9: 5859–5866.

    PubMed  CAS  Google Scholar 

  • McClelland M: Purification and characterization of two new modification methylases: M CIaI from Caryophanon latum L and M TagI from Thermus aquaticus YTl. Nucl Acids Res 1981; 9: 6795–6804.

    CAS  Google Scholar 

  • McClelland M: The effect of site specific methylation on restriction endonuclease cleavage (update). Nucl Acids Res 1983; 11: r169–r173.

    PubMed  CAS  Google Scholar 

  • Modrich P Zabel D: EcoRI endonuclease:Physical and catalytic properties of the homogenous enzyme. J Biol Chem 1976;25:5866–5874.

    Google Scholar 

  • Modrich P, Rubin RA: Role of the 2-amino group of deoxyguanosine in sequence recognition by EcoRI restriction and modification enzymes. J Biol Chem 1977; 252: 7273–7278.

    PubMed  CAS  Google Scholar 

  • Modrich P: Structures and mechanisms of DNA restriction and modification enzymes. Q Rev Biophys 1979; 12: 315–369.

    PubMed  CAS  Google Scholar 

  • Modrich P: Structures and mechanisms of DNA restriction and modification enzymes. Q Rev Biophys 1979; 12: 315–369.

    PubMed  CAS  Google Scholar 

  • Modrich P, Roberts RJ: Type II restriction and modification enzymes, in Linn SM, Roberts RJ (eds): Nucleases. Cold Spring Harbor Laboratory, New York, 1982; pp 109–154.

    Google Scholar 

  • Nardone G, George J, Chirikjian J: Properties and substrate specificity of BamHI methylase and endonuclease. Fed Proc Abstr 1983; 42: 21–51.

    Google Scholar 

  • Newman AK, Rubin RA, Kim S-H, Modrich P: DNA sequence of structural genes for EcoRI DNA restriction and modification enzymes. J Biol Chem 1981; 256: 2131–2137.

    PubMed  CAS  Google Scholar 

  • Noyer-Weidner M, Jentsch S, Pawleh B, Günthert U, Trantner TA: Restriction and modification in Bacillus subtilis: DNa methylation potential of the related bacteriophages Z, SPR, SP, 03T, and pl 1. J Virol 1983; 46: 446–453.

    PubMed  CAS  Google Scholar 

  • O’Connor CD, Humphreys GO: Expression of the EcoRI restriction-modification system and the construction of positive-selection cloning vectors. Gene 1982; 20: 219–229.

    PubMed  Google Scholar 

  • Ohlendorf DH, Anderson WF, Fisher RG, Takeda Y, Mathews BW: The molecular basis of DNA protein recognition inferred from the structure of cro repressor. Nature 1982; 298: 718–723.

    PubMed  CAS  Google Scholar 

  • Ohmuri H, Tomizawa J, Maxam AM: Detection of 5-methylcytosine in DNA sequences. Nucl Acid Rec 1978: 5: 1479–1485.

    Google Scholar 

  • Pabo CO, Lewis M: The operator-binding domain of X-repressor, structure and DNA recognition. Nature 1982; 298: 443–447.

    PubMed  CAS  Google Scholar 

  • Petrusyte MP, Janulaitis AA: Specific methylase from Bacillus centrosporus. Bioorg Khim USSR 1981; 7: 1885–1887.

    CAS  Google Scholar 

  • Polisky B, Greene P, Garfin DE, McCarthy BJ, Goodman HM, Boyer HW: Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc Nat Acad Sci USA 1975; 72: 3310–3314.

    PubMed  CAS  Google Scholar 

  • Quint A, Cedar H. In vitro methylation of DNA with Hpall methylase. Nucl Acids Res 1981; 9: 633–646.

    PubMed  CAS  Google Scholar 

  • Razin A, Riggs AD: DNA methylation and gene function. Science 1980; 210: 604–610.

    PubMed  CAS  Google Scholar 

  • Razin A, Urieli S, Pollack Y, Gruenbaum Y, Glaser G: Studies on the biological role of DNA methylation; IV. Mode of methylation of DNA in E. coli cells. Nucl Acids Res 1980; 8: 1783–1797.

    PubMed  CAS  Google Scholar 

  • Roberts RJ: Restriction and modification enzymes and their recognition sequences. Nucl Acids Res 1983; 11: r135 - r173.

    PubMed  CAS  Google Scholar 

  • Rosenberg JM, Boyer HW, Greene PJ: The structure and function of the EcoRI restriction endonuclease, in Chirikjian JG (ed): Gene Amplification and Analysis. New York, Elsevier-North Holland, 1981; vol 1. pp 131–164.

    Google Scholar 

  • Rosenberg JM, Greene P: EcoRI* specificity and hydrogen bonding. DNA 1982; 1: 117–124.

    PubMed  CAS  Google Scholar 

  • Roy PH, Smith HO: The DNA methylases of Haemophilus influenzae Rd. I. Purification and properties. J Mol Biol 1973a; 81: 427–444.

    PubMed  CAS  Google Scholar 

  • Roy PH, Smith HO: The DNA methylases of Haemophilus influenzae Rd. II. Partial recognition site base sequences. J Mol Biol 1973b; 81: 445–459.

    PubMed  CAS  Google Scholar 

  • Rubin RA, Modrich P: EcoRI methylase. Physical and catalytic properties of the homogeneous enzyme. J Biol Chem 1977; 252: 7265–7272.

    PubMed  CAS  Google Scholar 

  • Rubin RA, Modrich P, Vanaman TC: Substrate dependence of the mechanism of EcoRI endonuclease. Nucl Acids Res 1978; 5: 2991–2997.

    PubMed  CAS  Google Scholar 

  • Sato S, Nakazawa K, Shinomija T: A DNA methylase from Thermus thermophilus HB8. J Biochem 1980; 88: 737–747.

    PubMed  CAS  Google Scholar 

  • Sauer RT, Yocum RR, Doolittle RF, Lewis M, Pabo CO: Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature 1982; 298: 447–451.

    PubMed  CAS  Google Scholar 

  • Schoner B, Kelly S, Smith HO: The nucleotide sequence of the Hhall restriction and modification genes from Haemophilus haemolyticus. Gene 1983; 24: 227–236.

    CAS  Google Scholar 

  • Siebenlist U, Simpson RB, Gilbert W: E. coli RNA polymerase interacts homologously with two different promoters. Cell 1980; 20: 269–281.

    PubMed  CAS  Google Scholar 

  • Smith HO: Nucleotide sequence specificity of restriction endonucleases. Science 1979; 205: 455–466.

    PubMed  CAS  Google Scholar 

  • Streeck RE: Single-strand and double-strand cleavage at half-modified and fully modified recognition sites for the restriction nucleases Sau3A and Taql. Gene 1980; 12: 267–275.

    CAS  Google Scholar 

  • Sussenbach JS, Monfoort CH, Schiphof R, Stobberingh EE: A restriction endonuclease from Staphylococcus aureus. Nucl Acids Res 1976; 3: 3193–3202.

    CAS  Google Scholar 

  • Szomolanyi E, Kiss A, Venetianer P: Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene 1980; 10: 219–225.

    CAS  Google Scholar 

  • Trautner TA, Pawlek B, Bron S, Anagnostopoulos C: Restriction and modification in B. subtilis: Biological aspects. Mol Gen Genet 1974; 131: 181–191.

    PubMed  CAS  Google Scholar 

  • Trautner TA, Pawlek B, Günthert U, Canosi U, Jentsch S, Freund M: Restriction and modification in Bacillus subtilis: Identification of a gene in the temperate phage SPß coding for a BsuR specific modification methyltransferase. Mol Gen Genet 1980; 180: 361–367.

    PubMed  CAS  Google Scholar 

  • van der Ploeg LHT, Flavell RA: DNA methylation in the human y5ß-globin locus in erythroid and nonerythroid tissues. Cell 1980; 19: 947–958.

    PubMed  Google Scholar 

  • Vanyushin BF, Dobritsa AP: On the nature of the cytosine-methylated sequence in DNA of Bacillus brevis Error! Hyperlink reference not valid . Biophys. Acta 1975; 407: 61–72.

    CAS  Google Scholar 

  • Vardimon L, Kressman A, Cedar H, Maechler M, Doerfler W: Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Nat Acad Sci USA 1982; 79: 1073–1077.

    PubMed  CAS  Google Scholar 

  • Venetianer P, Kiss A: The restriction-modification enzymes of Bacillus sphaericus R. Nucl Acids Res 1981; 9: 209–215.

    Google Scholar 

  • Vovis GF, Horiuchi K, Zinder ND: Kinetics of methylation by a restriction endonuclease from Escherichia coli B. Proc Nat Acad Sci USA 1974; 71: 3810–3813.

    PubMed  CAS  Google Scholar 

  • Walder RY, Hartley JL, Donelson JE, Walder JA: Cloning and expression of the Pstl restriction-modification system in Escherichia coli. Proc Nat Acad Sci USA 1981; 78: 1503–1507.

    CAS  Google Scholar 

  • Walder RY, Langtimm CJ, Chatterjee R, et al: Cloning of the Mspl modification enzyme. J Biol Chem 1983; 258: 1235–1241.

    PubMed  CAS  Google Scholar 

  • Winter RB, Berg OG, vonHippel PH: Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: Kinetic measurements and conclusions. Biochemistry 1981; 20: 6961–6977.

    PubMed  CAS  Google Scholar 

  • Woodbury CP Jr, Hägenbuckle O, vonHippel PH: DNA site recognition and reduced specificity of the EcoRI endonuclease. J Biol Chem 1980; 255: 11534–11546.

    PubMed  CAS  Google Scholar 

  • Woodbury CP Jr, vonHippel PH: Relaxed sequence specificities of EcoRI endonuclease and methylase: Mechanisms, possible practical applications, and uses in defining protein-nucleic acid recognition systems, in Chirikjian JG (ed): Gene Amplifications and Analysis. New York, Elsevier-North Holland, Inc, 1981, vol 1, pp 181–207.

    Google Scholar 

  • Yoo OJ, Agarwal KL: Isolation and characterization of two proteins possessing Hpall methylase activity. J Biol Chem 1980; 255: 6445–6449.

    PubMed  CAS  Google Scholar 

  • Yoo OJ, Dwyer-Hallquist P, Agarawal KL: Purification and properties of the Hpal methylase. Nucl Acids Res 1982; 10: 6511–6519.

    PubMed  CAS  Google Scholar 

  • Zappia V, Carteni-Farina M, Porcelli M: Biochemical and chemical aspects of decarboxylated S-adenosylmethionine, in Usdin E, Borchardt RT, Creveling CR (eds): Transmethylation. New York, Elsevier-North Holland, Inc, 1979; pp 95–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Smith, H.O., Kelly, S.V. (1984). Methylases of the Type II Restriction-Modification Systems. In: Razin, A., Cedar, H., Riggs, A.D. (eds) DNA Methylation. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8519-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8519-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8521-9

  • Online ISBN: 978-1-4613-8519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics