Skip to main content

Oriented Distance Functions in Shape Analysis and Optimization

  • Conference paper
Control and Optimal Design of Distributed Parameter Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 70))

Abstract

The object of this paper is twofold. We first present constructions which induce topologies on subsets of a fixed domain or hold-all D in ℝN by using set parametrized functions in an appropriate function space. Secondly we study the role of the family of oriented distance functions (also known as algebraic or signed distance functions) in the analysis of shape optimization problems. They play an important role in the introduction of topologies which retain the classical geometric properties associated with sets: convexity, exterior normals, mean curvature, C k boundaries, etc.

The two authors also acknowledge the support of the Institute for Mathematics and its Applications while attending the IMA Workshop on Control and Optimal Design of Distributed Parameter Systems (November 9–13, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams, SoboIev Spaces, Academic Press, New York, London 1975.

    Google Scholar 

  2. J.P. Aubin, L’analyse Non Linéaire et Ses Motivations Économiques, Masson, Paris, New York, Barcelona, Milan, Mexico, Sao Paulo 1984.

    Google Scholar 

  3. J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin 1990.

    MATH  Google Scholar 

  4. M. Bardi and M. Falcone, Discrete approximation of the minimal time function for systems with regular optimal trajectories, in Analysis and Optimization of Systems, (eds., A. Bensoussan and J.L. Lions) Springer-Verlag, Berlin, Heidelberg, New York 1990, pp. 103–112.

    Google Scholar 

  5. G. Barles, Remarks on a flame propagation model, Internal report, Rapport de Recherche INRIA no. 464, December 1985.

    Google Scholar 

  6. M. Berger, Géométrie, Vols 1, 2, 3, 4, 5, 6, CEDIC/Fernand Nathan, Paris 1977, (English Transl.) Geometry I, II, Springer-Verlag, Berlin, Heidelberg, New York 1987.

    Google Scholar 

  7. R. Caccioppoli, Misura e integrazione sugli insiemi dimensionalmente orientati, VIII (12) Rend. Accad. Naz. Lincei, Cl. Sc. fis mat nat (1952), pp. 3–11, 137–146.

    Google Scholar 

  8. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1983.

    MATH  Google Scholar 

  9. R. Correa and A. Seeger, Directional derivative of a minimax function, Nonlinear Analysis, Theory, Methods & Applications 9 (1985), pp. 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. De Giorgi, Su una teoria generale della misura, Ann. Mat. Pura Appl. 36 (serie IV) (1954), pp. 191–213.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.C. Delfour and J.P. Zolésio, A boundary differential equation for thin shells,J. Differential Equations (to appear).

    Google Scholar 

  12. M.C. Delfour and J.P. Zolésio, Functional analytic methods in shape analysis, in Boundary Control and Variation, Chapter 6, (ed., J.-P. Zolésio ), Marcel Dekker, New York 1994, pp. 105–139.

    Google Scholar 

  13. M.C. Delfour and J.P. Zolésio, On a variational equation for thin shell,in Control and Optimal Design of Distributed Parameter Systems,(editors, J. Lagnese, D. Russell and L. White) Springer-Verlag, New York (this volume).

    Google Scholar 

  14. M.C. Delfour and J.P. Zolesio, Shape analysis via oriented distance functions,J. Functional Analysis (in press).

    Google Scholar 

  15. M.C. Delfour and J.P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control and Optim. 26 (1988), pp. 834–862.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Dellacherie, Ensembles Analytiques, Capacités, Mesures de Hausdorff, in Lecture Notes in Applied Mathematics, Vol. 295, Springer-Verlag, Berlin, Heidelberg, New York 1972.

    Google Scholar 

  17. J. Dieudonné, Éléments d’analyse,1. Fondement de l’analyse moderne,Gauthier-Villars, Paris 1969 (Bordas 1979). (Trans]. from Foundations of Modern Analysis,Academic Press, Inc., New York and London 1960.)

    Google Scholar 

  18. J. Dugunji, Topology, (second printing)Allyn and Bacon, Inc., Boston 1966.

    Google Scholar 

  19. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris 1974.

    MATH  Google Scholar 

  20. M. Falcone, The minimum time problem and its applications to front propagation,Internal report, Dipartimento di matematica “Guido Castelnuovo”, Università degli Studi di Roma “La Sapienza”, Roma 1992/93.

    Google Scholar 

  21. M. Falcone and R. Ferretti, High-order approximations for viscosity solutions of Hamilton-Jacobi-Bellman equations, in sl ICOSAHOM 92, International Conference on Spectral and High-Order Methods, Montpellier, France, June 1992.

    Google Scholar 

  22. M. Falcone, T. Giorgi and P. Loreti, Level sets of viscosity solution and applications, Internal report, (revised version) Istituto per le applicazioni del calcolo “Mauro Picone”, Roma, May 1992.

    Google Scholar 

  23. H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York 1969.

    MATH  Google Scholar 

  24. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1983.

    MATH  Google Scholar 

  25. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, Basel, Stuttgart 1984.

    MATH  Google Scholar 

  26. J. Horvath, Topological vector spaces and distributions, Vol. I, Addison—Wesley, Reading, Mass. 1966.

    MATH  Google Scholar 

  27. S.R. Kulbarni, S. Mitter and T.J. Richardson, An existence theorem and lattice approximations for a variational problem arising in computer vision, in Signal Processing, Part I. Signal Processing Theory, (eds., L. Auslander, T. Kailath and S. Mitter) IMA Series, Springer-Verlag, Heidelberg, Berlin, New York 1990, pp. 189–210.

    Google Scholar 

  28. V.G. Maz’ja, Sobolev Spaces, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1980.

    Google Scholar 

  29. F. Morgan, Geometric Measure Theory, a Beginner’s Guide, Academic Press, Inc. ( Hartcourt Brace Jovanovich Publisher) Boston, San Diego 1988.

    Google Scholar 

  30. C.B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York 1966.

    MATH  Google Scholar 

  31. J.A.F. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthier—Villars, Paris 1873.

    Google Scholar 

  32. T.J. Richardson, Scale independent piecewise smooth segmentation of images via variational methods, Report CICS-TH-194, Center for Intelligent Control Systems, Massachusetts Institute of Technology, Cambridge, Mass., February 1990.

    Google Scholar 

  33. T.L. Rockafellar, Convex analysis, (second printing) Princeton University Press, Princetown, New Jersey 1972.

    Google Scholar 

  34. W. Rudin, Principles of Mathematical Analysis, McGraw—Hill, New York 1967.

    Google Scholar 

  35. L. Schwartz, Analyse mathématique, Vol I, Hermann, Paris 1967.

    MATH  Google Scholar 

  36. N. Shimakura, Partial differential operators of elliptic type, Transi. of Math. Monographs, Vol. 99, American Mathematical Society, Providence, R. I. 1992.

    Google Scholar 

  37. J. Sokolowski and J.P. Zolésio, Introduction to shape optimization: Shape sensitivity analysis, Springer-Verlag, New York, Berlin, Heidelberg 1992.

    Book  MATH  Google Scholar 

  38. G. Stampacchia, Equations elliptiques du second order à coefficients discontinus, Séminaire de Mathématiques Supérieures, Presses de l’Université de Montréal, Université de Montréal 1966.

    Google Scholar 

  39. V. Šverák, On optimal shape design, Journal Math. Pures et Appl. (to appear) (report 1992 ).

    Google Scholar 

  40. V. Šverák, On shape optimal design, C.R. Acad. Sc Paris Sér. I 315 (1992), pp. 545–549.

    MATH  Google Scholar 

  41. F.A. Valentine, Convex Sets, McGraw—Hill 1964.

    Google Scholar 

  42. E.H. Zarantonello, Projections on convex sets in hilbert spaces and spectral theory, parts I and II, in Contributions to Nonlinear Functional Analysis, (ed., E.H. Zarantonello) Academic Press, New York, London 1971, pp. 237–424.

    Google Scholar 

  43. J.P. Zolésio, Identification de domaines par déformation, ( Thèse de doctorat d’état) Université de Nice, France 1979.

    Google Scholar 

  44. J.P. Zolésjo, The material derivative (or speed) method for shape optimization, in Optimization of Distributed Parameter Structures, vol II, (eds., E.J. Haug and J. Céa) Sijhofff and Nordhoff, Alphen aan den Rijn 1981, pp. 1089–1151.

    Google Scholar 

  45. J.P. Zolésio, Optimisation de Domaines, ( Thèse de spécialisation) Université de Nice, France 1973.

    Google Scholar 

  46. J.P. Zolésio, Shape optimization problems and free boundary problems, in Shape optimization and free boundaries, (ed., M.C. Delfour) Kluwer Academic Publishers, Dordrecht, Boston, London 1992, pp. 397–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Delfour, M.C., Zolésio, JP. (1995). Oriented Distance Functions in Shape Analysis and Optimization. In: Lagnese, J.E., Russell, D.L., White, L.W. (eds) Control and Optimal Design of Distributed Parameter Systems. The IMA Volumes in Mathematics and its Applications, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8460-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8460-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8462-5

  • Online ISBN: 978-1-4613-8460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics